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In this paper we propose a framework for tracking multiple interacting targets in a wide-area camera
network consisting of both overlapping and non-overlapping cameras. Our method is motivated from
observations that both individuals and groups of targets interact with each other in natural scenes. We
associate each raw target trajectory (i.e., a tracklet) with a group state, which indicates if the trajectory
belongs to an individual or a group. Structural Support Vector Machine (SSVM) is applied to the group
states to decide if merge or split events occur in the scene. Information fusion between multiple overlap-
ping cameras is handled using a homography-based voting scheme. The problem of tracking multiple
interacting targets is then converted to a network flow problem, for which the solution can be obtained
by the K-shortest paths algorithm. We demonstrate the effectiveness of the proposed algorithm on the
challenging VideoWeb dataset in which a large amount of multi-person interaction activities are present.
Comparative analysis with state-of-the-art methods is also shown.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Multi-target tracking in a camera network, although attractive
to researchers for a long time [1,2], still remains challenging. In
particular, large illumination variations across cameras, cluttered
scenarios and a camera network with both overlapping and
non-overlapping views pose impediments to traditional tracking
algorithms. Moreover, multiple cameras require computing asso-
ciations between detected targets in different views, which can
also be a challenging task. In this paper, we propose a novel
camera network tracking scheme, called Switching Network
Tracker (SNT), for tracking of multiple interacting targets in a
cluttered camera network scene with both overlapping and
non-overlapping views.

Our scheme is motivated by natural scenes as shown in Fig. 1,
where people interact with each other in a camera network. We
see that people often congregate together in a way where it may
be difficult to individually detect them, and these congregations
might split either within the view of an individual camera, or in
the blind areas between non-overlapping cameras. When an indi-
vidual target cannot be detected, we can still get an estimate of
the target’s state by tracking the group into which it merged.
Therefore, it is necessary to design a tracking scheme for camera
networks, which integrates group tracking and individual tracking,
and switches smoothly between the two to generate robust
individual tracks.
Besides, a wide-area camera network usually consists of both
overlapping and non-overlapping views. In order for a tracking
scheme to obtain long and stable tracks for every target within
and across cameras, both overlapping and non-overlapping views
should be addressed. For overlapping views, cooperation among
cameras is necessary to improve the system performance. For
non-overlapping views, different illumination conditions and
the unknown behaviors in blind area between cameras should
be taken into consideration in order to obtain a stable tracking
system.

There are a few works which systematically address the
problem of multi-target tracking in camera networks with both
overlapping and non-overlapping views. The papers [3,4] extended
the recent multi-target tracking framework in [5,6] to a non-over-
lapping camera network application. Detections of a person are
associated to form a short but robust track, the so called tracklet,
for this person. However, the problem of tracking targets in a clut-
tered scene with a large number of interacting activities has not
been addressed in these works. The works in [7,8] addressed the
tracking problem in overlapping views with a similar tracklet asso-
ciation scheme, but clutter due to people grouping together was
not addressed.

The proposed SNT is designed to handle a cluttered scene with
multiple interacting targets. Specifically, the SNT can track
individuals and groups simultaneously in a camera network. Indi-
viduals are tracked in uncluttered scenes where single targets can
be clearly detected, whereas the groups are tracked for cluttered
environment where individual target detection is inaccurate or
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infeasible with state-of-the-art detectors. We assign each detected
region with a group state to define if the region is associated with a
group or an individual. In order to identify a group state of a
detected region, a Structural Support Vector Machine (SSVM)
model is constructed, upon local features of each target and the
relationships between targets, to determine the merging and split-
ting events occurring in the scene. In the operational phase of the
system, detections that can be associated with high confidence
lead to the formation of tracklets. Each tracklet is assigned with
a group state by the learned SSVM based on all associated observa-
tions from cameras with overlapping views. Then, a homography
based target state estimation methodology is applied to fuse track-
lets in overlapping views. With the consistent tracking results on
overlapping views, the problem of tracking multiple interacting
targets in a camera network is formulated as a network flow prob-
lem. We show that such a problem can be converted to a mixed
integer programming problem and the K-shortest paths algorithm
[9,10] is used to obtain the optimal solution.

In the experiments, we work on the VideoWeb dataset [11],
which is a publicly available camera network dataset with both
overlapping and non-overlapping camera views. To the best of
our knowledge, we deal with a far more complex multi-camera
scenario than previous works that have looked into this problem
[3,4,7,12], in terms of the number of cameras, targets, their actions,
and camera fields of view. We demonstrate the effectiveness of our
tracking algorithm with thorough test results.

1.1. Related works

We briefly review the most relevant papers on tracking in
camera networks so as to better explain the contribution of the
proposed approach. In general, tracking in a camera network can
be divided into two parts: tracking in a non-overlapping camera
network and tracking in an overlapping camera network.
Fig. 1. Tracking challenges in a camera network, where C1 and C2 have overlapping view
and the vertical axis shows three different cameras in each time step. At t1, five persons s
five persons, while C2 can only observe three of them. At t2, the five-persons group spli
purple and blue (illustrated by two arrows) are occluded by them. However, the person
occluded at t2, can be fully observed. In C3, the group where only the person in red is see
split in the blind area between C1 and C3. (For interpretation of the references to color
In the first category, [13] is one of the early works on non-over-
lapping multi-camera tracking, in which appearance relationships
between cameras were used to establish correspondence. The work
in [14] learned a camera network topology and path probabilities
of objects. Many works focused on spatio-temporal cues to solve
the tracking problem. Ref. [15] investigated the unsupervised
learning of a model of trajectories based on the activity informa-
tion. Ref. [16] used a stochastic transition matrix to describe
motions between cameras. Similarly, [17,18] proposed new transi-
tion distributions based on statistical dependence between obser-
vations in different cameras. The work of [1,2,12] learned the
brightness transfer functions (BTFs) either online or offline
between cameras. Ref. [4] learned an appearance affinity model
between two non-overlapping cameras online. Some recent works
on tracking in non-overlapping camera views combine both
appearance information and spatio-temporal cues together to
achieve better results. Refs. [3,19] proposed an optimization
framework by combining short term feature correspondences
across the cameras with the long-term feature dependency mod-
els. Ref. [20] did not use the spatio-temporal cues in multi camera
scenarios, but instead investigated directional angles using the
spatio-temporal continuity in a single camera field. However, most
of these works failed to handle a high clutter scene.

In the second category (overlapping views), most works used
systems with calibrated cameras. Ref. [7] projected all the blobs
in different cameras onto the ground plane and then performed
standard feature association algorithms. Ref. [8] used a similar
method but developed a greedy matching algorithm which can
achieve results similar to the Hungarian algorithm but with less
computation. Ref. [21] determined spatial positions by transform-
ing images based on a ground plane homography. Ref. [22] esti-
mated a ground plane occupancy map to track people by their
2D segmentations in each camera. Ref. [23] exploited both dynami-
cal and geometrical constraints to improve robustness to occlusion.
s and C3 is not overlapped with either C1 or C2. The horizontal axis represents time
tay in a group who are marked with five different colors. C1 can fully observe these

ts into three parts. C1 observes the persons in yellow and red, while the persons in
in purple can be fully observed in C2. At time t3, the person in purple in C1, who is

n at t2 is recognized as two individual persons, which means that these two persons
in this figure legend, the reader is referred to the web version of this article.)
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Ref. [24] explored a distributed estimation strategy for tracking
and data association.

Tracking methods utilizing group information have been stud-
ied in single camera tracking schemes. In the work of [25–27],
group information worked as a constraint to improve individual
tracking performance. The algorithm in [28] jointly modeled indi-
vidual and group information. Ref. [29,30] proposed the problem of
group tracking with a descriptor of appearance features. Ref. [31]
exploited the social force between two pedestrians to associate
groups of people. However, none of these works used two classes
of trackers that could freely track groups and individuals simulta-
neously to obtain robust tracks for every target. Person re-identifi-
cation [32] is another method which finds the one to one
correspondences between targets in different cameras. However,
no group information is used in such an application, and person
re-identification datasets are more constrained than what we deal
with in this work.

1.2. Contributions

Our work has three main contributions:

1. We propose a novel tracking framework – SNT – for camera
networks. The SNT is designed to generate robust and long
individual tracks, even in cluttered scenes, by tracking both
individuals and groups simultaneously depending on the
degree of clutter in the scenes.

2. We design an SSVM that integrates spatial and temporal
relationships between tracklets to detect group formation and
splitting in a camera network. With the merging and splitting
events, group states of tracklets can be better determined,
which is significant for the smooth switching between indi-
vidual and groups across cameras.

3. A general tracklet association algorithm is developed for both
overlapping and non-overlapping scenes. We introduce group
nodes to the standard min-cost network flow problem and
modify the problem accordingly to handle multiple interacting
targets in a camera network. An approach based on linear pro-
gramming is proposed to solve the modified network flow
problem.

2. Group model using a structural SVM (SSVM)

As interactions between targets may lead to a situation where
individuals cannot be detected separately, a group model is need-
ed. We are also interested in the merge and split activities of the
group so as to obtain a long track for each target.

In the traditional definition of a group [5,25], a tracklet is seen
in a group when there is at least one nearby tracklet within the
same time window. Corner features were commonly used to clus-
ter the trajectories into groups [33,34], while [35] performed group
detection based on tracklets. We use the tracklets as the inputs of
our group detector, while the corner features provided additional
cues in case of missing detections. Following the method in
[6,36], we use the particle filter to associate detections into track-
lets. We train an SVM classifier [37] upon the features of the
bounding boxes. Note that the group detector is not the focus of
our work and can be replaced by any advanced group detector.
Three classification scores (named group states g) are obtained:
individual (0), group (1) and others (2). g ¼ 2 is needed to deal
with situations when it is not clear if an individual or group is
detected, which can happen when groups merge or split.

There are three possible group events between two group
states: merge, split, and stable. The input of the group model is a
set of tracklets in camera Cm; T Cm ¼ T Cm

1 ; T Cm
2 ; . . . ; T Cm

i ; . . . ; T Cm
N

� �
,

where N is the total number of tracklets in Cm. We consider
tracklets T Cm
i and T Cm

j from different times, where T Cm
j starts after

T Cm
i ends and the start time of T Cm

j minus the end time of T Cm
i is

within a threshold. The group event label y, evaluated over the
two time windows, is defined as

y T Cm
i ; T Cm

j

� �
¼

0; if no event;
1; if merge events detected;
2; if split events detected:

8><>: ð1Þ

As discussed above, if g ¼ 2 for a tracklet, we need to learn if the
tracklet is in a merge/split event. We propose a novel group event
learning method which can jointly estimate the group event labels
of a set of tracklets. A structural SVM model that integrates motion
features with various context features is developed for this pur-
pose. In the most of this section, we drop Cm from the notation
of a tracklet because the group event detection is performed in
every single camera view.

2.1. Motion feature descriptors

To detect the group state of a tracklet, both spatial context fea-
tures and temporal context features are needed. This is because a
tracklet’s group state change depends on the spatial relationship
between this tracklet and other tracklets. A merge/split event also
depends on the temporal relationship between two tracklets, i.e.,
an individual merges to a group over time. A tracklet i’s motion fea-
tures include the average size, the position on the first and last
frame, and the moving speed. A motion feature descriptor of track-
let i is represented as ½Wi;Hi;Xi;Yi; sxi; syi�. We use W and H to rep-
resent the average width and height of a tracklet between its first
and last frame, and use X and Y to represent the average horizontal
and vertical positions of a tracklet on the image plane between its
first and last frame. sx and sy denote the average moving speed of
the tracklet in horizontal and vertical directions.

Spatial context feature descriptor: Given a time window NT ,
the spatial context feature is the spatial relationship between the
interested tracklet and the nearby tracklets. RSijðnÞ and RT ijðnÞ
are the spatial and temporal relationships of T i and T j at frame
n. The spatial relationship between these two tracklets is defined

as the normalized histogram RSij ¼ 1
NT

PNT
n¼1RSijðnÞ, where NT is

the number of frames in the time window. RSijðnÞ represents the
distance between T i and T j at frame n. In practice,RSijðnÞ depends
on the motion features of the tracklets. The distance between two
tracklets T i and T j at frame n is dnðT i; T jÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXiðnÞ � XjðnÞÞ2 þ ðYiðnÞ � YjðnÞÞ2

q
. The spatial context feature

descriptor between T i and T j at frame n is defined as

RSijðnÞ ¼
½1 0 0�T ; if dnðT i; T jÞ < minfWiðnÞ;WjðnÞ;HiðnÞ;HjðnÞg;
½0 0 1�T ; if dnðT i; T jÞ > 2�minfWiðnÞ;WjðnÞ;HiðnÞ;HjðnÞg;
½0 1 0�T ; otherwise:

8><>:
ð2Þ

Temporal context feature descriptor: The SNT will not switch
the tracking mode until a merge or split event is detected. The tem-
poral relationship between merge/split events and the group states
g is considered in the tracking system. There are 5 attribute subsets
between two tracklets at two consecutive time windows. The attri-
bute subset definitions can be found in Table 1. If any attribute Ai is
satisfied, the corresponding attribute is 1 while the others are 0. Ai

is determined by the tracklets’ group states g and the feature
descriptors of the tracklets. Note that the potential merge/split
events are determined based on the average size change of the
tracklets and become cues for the final label of these group events.
The average size change cues include the number of persons as
well as the size of the group on the image plane. If the number



Table 1
Different relationships between individuals and groups with t1 < t2.

Attribute subset Associated attributes

A1 t1: an individual; t2: a group
A2 t1: a small group; t2: a large group
A3 t1: a group; t2: an individual
A4 t1: a large group; t2: a small group
A5 Otherwise
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of persons does not change while the size of the group on the
image plane has a significant change, there is a high possibility that
the person detector missed some persons in the crowded scene.
The normalized histogram RT ij is the temporal context feature of
tracklet T i with respect to tracklet T j. We define RT ij as a 5-bin
histogram, an example of which is shown in Fig. 2.

2.2. Group merge and split model

Given all the features of tracklets, the goal is to detect the merge
or split events. A set of tracklets T is associated with a label vector
y ¼ fyig; i ¼ 1;2; . . . ;N, where yi 2 f0;1;2g is the group event label
vector of T i. We infer the group states of the tracklets set from the
combination of various context features discussed above. Define
DRS and DRT as the dimensions of RSij and RT ij. A potential func-
tion between features of T and label y is defined as FðT ; yÞ:

FðT ; yÞ ¼
XN

i¼1;j¼1;i–j

wT
RS;ðyi ;yjÞRSij þ

XN

i¼1;j¼1;i–j

wT
RT ;ðyi ;yjÞRT ij ð3Þ

where RSij 2 RDRS and RT ij 2 RDRT are the spatial and temporal
context feature descriptors associated with tracklet T i and T j

respectively. wRS;ðyi ;yjÞ 2 RDRS and wRT ;ðyi ;yjÞ 2 RDRT are the weights
that capture the spatial and temporal relationships of group event
classes yi and yj. N is the number of tracklets.

2.3. Model learning and inference

The potential function FðT ; yÞ can be converted to a linear func-
tion with a parameter vector w. Define yi the label vector of the
corresponding tracklet T i. We first rewrite Eq. (3) as:

FðT ;yÞ¼wT
RS

XN

i¼1;j¼1;i–j

wðRSij;yi;yjÞþwT
RT

XN

i¼1;j¼1;i–j

/ðRT ij;yi;yjÞ ð4Þ

where wRS and wRT are weight vectors and defined as

wRS ¼ wT
RS;ð1;1Þ � � �wT

RS;ð1;NÞ � � � wT
RS;ðN;NÞ

h iT
;

Fig. 2. An example of spatial and temporal context motion features in four consecutive
group tracklet (yellow rectangle). The spatial context descriptor between the blue and r
color blue and red. In (b), the purple group is merged by the two individuals in (a). The
tracklet in (b) is RT bp ¼ ½1 0 0 0 0� because it is the event that two individuals merge to
group. The temporal context feature descriptor between the purple tracklet and the gree
this figure legend, the reader is referred to the web version of this article.)
wRT ¼ wT
RT ;ð1;1Þ � � �wT

RT ;ð1;NÞ � � � wT
RT ;ðN;NÞ

h iT
;

and wðRSij; yi; yjÞ and /ðRT ij; yi; yjÞ have non-zero entries at the
position corresponding to class pair ðyi; yjÞ.

We define the joint weight vector w and the joint feature vector

EðT ; yÞ as w ¼ wT
RS ;w

T
RT

� �T and EðT ; yÞ ¼
P

i;j;i–j wðRSij; yi; yjÞ;
h

P
i;j;i–j /ðRT ij; yi; yjÞ�

T , where i; j ¼ 1; . . . ;N. Then Eq. (4) can be
expressed as

FðT ; yÞ ¼ wT EðT ; yÞ; ð5Þ

The learning algorithm can be written as

w� ¼ arg min
w

1
2

wT w� C
XM

i¼1

wT EðT i; yiÞ þ C
XM

i¼1

max
yi

wT EðT i; yiÞ þ DðT i; yiÞ
� �(

;

ð6Þ

where D is the number of tracklets that associate with incorrect
labels and C controls the tradeoff between the errors in the training
model and margin maximization. Eq. (6) can be converted to an
unconstrained convex optimization problem and solved by the cut-
ting plane methodology [38].

In the inference part, we adopt the greedy search methodology
in [39–41] to find the optimal label vector ytest . We first initialize
the assignment sets, the label set y, and the instanced tracklet
set T as the null sets, indicating no tracklet state is recognized
yet. We augment these sets by iteratively adding the labeled track-
let that increases the potential score the most.
3. Camera network tracklet association

Having the group state and the group event label of every track-
let in each camera, tracklet fusion in cameras with overlapping
views is performed to obtain the consistent group states for the
overlapping tracklets. Then, with single camera tracking being
done, the tracklet association scheme is applied to the camera net-
work. The tracklet association scheme aims to associate tracklets
into long, stable tracks. If merge/split events are detected by the
SSVM group model in Section 2, a group tracklet is associated with
its corresponding individual tracks.

3.1. Group state estimation in overlapping views

The SNT fuses all the tracklets in the overlapping views by a
homography transformation between overlapping views similar
to [21]. A homography transformation is used to project the ground
plane from one camera view to that in another camera view. The
group state of one target in different camera views may not be
the same because of the differences in the observations. A
time windows. (a) has two individual tracklets (red and blue rectangles) and one
ed individuals at this frame n is RSbrðnÞ ¼ ½1 0 0�, where the subscripts denote the
temporal context feature descriptor between the blue tracklet in (a) and the purple

a group. From (c) to (d), the purple group and the yellow group merge to a larger
n tracklet is thus RT pg ¼ ½0 1 0 0 0�. (For interpretation of the references to color in



Fig. 3. A network flow framework for a simple graph in a single camera view. The
purple nodes with solid lines represent the single target, the blue nodes with solid
lines represent the group target, and the blue nodes with dotted lines are virtual
nodes. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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weighted voting scheme is used to obtain the consistent group
state of the same target across all cameras. Specifically, if there is
an observation in the overlapping views between at least two cam-
eras, the final group state is a linear combination of the group state
from each camera. The group state from the camera with the
widest view is assigned the highest weight while the ones from
other cameras are assigned low weights. Thresholding is applied
then to decide a consistent group state for the target.

3.1.1. Single camera tracking
We formulate the multi-target tracking task in a single camera

as a network flow problem. We assume that there are l time inter-
vals in a video sequence in every camera view. A graph G ¼ ðV ; EÞ is
built as in Fig. 3. Every tracklet is seen as a node in G, where the
group states of it in all the overlapping view cameras are consistent.
We also add two virtual nodes: the source node v start and the sink
node vend representing the starting and ending nodes. The edges
correspond the admissible association between two nodes. The ver-
tex set V consists of a start node vstart , a sink node vend, and nodes
from the time interval 1 to l. Each edge is assigned a cost ci;j which
is based on the feature similarity between two nodes i and j. We
define f ij as a binary indicator variable that is 1 when there is an
association between the nodes i and j and 0 otherwise. Thus,

f start;i ¼
1; if i is the starting node of a track X k;

0; otherwise:

	
ð7Þ

f i;end ¼
1; if i is the ending node of a track Xk;

0; otherwise:

	
ð8Þ

f i;j ¼
1; if there is an admissible associationbetween the nodes i and j

in two consecutive time intervals;
0; otherwise:

8><>:
ð9Þ

where X k represents a long, associated track.
For every node, the sum of flows arriving at a node j equals to

the sum of outgoing flows from the node j. If there is an association
between two tracklets, no other associations are allowed between
either of these two tracklets. Thus the following constraint on the
variable f must be satisfied,

f start;j þ
X

i

f i;j ¼
X

k

f j;k þ f j;end; ð10Þ

While a node can represent either a group or an individual, such
a constraint in Eq. (10) cannot be always satisfied because a group
can be merged or split into multiple individuals. This might cause a
many-to-one matching problem. To avoid such a case, we use the
group state of a node as well as the merge/split label obtained from
Section 2 to temporarily change the number of nodes. Specifically,
if there is a merge/split event before/after a group node, we add
virtual group nodes to make the total number of group nodes
including the virtual nodes equal to the number of individual
nodes before/after the split/merge event. An example is shown in
Fig. 3, in which the blue node with solid lines is a group node
and the blue node with dotted lines is the virtual node. Thus,

Nt ¼
Nt�1 þ eNG

t�1; if there is a merge event before t;

Ntþ1 þ eNG
tþ1; if there is a split event after t;

0; otherwise:

8><>: ð11Þ

where Nt is the number of nodes in time interval t, and eNG
t�1 is the

number of the added virtual nodes in time interval t � 1.
We define the cost between two nodes i and j in a graph G as the

negative logarithm of the feature similarity between two nodes,
which is denoted by ci;j, i.e.,
ci;j ¼ � logSðT i; T jÞ; ð12Þ

where S is the similarity function.
The tracking problem in a single camera view is then formulat-

ed as

Minimize
X

j

cstart;jf start;j þ
X

i;j

ci;jf i;j þ
X

j

cj;endf j;end; ð13Þ

We also need to ensure that all flows from the source node v start

eventually end up in the sink node vend, i.e.,X
i

f start;i ¼
X

k

f k;end: ð14Þ
3.1.2. Camera network tracking
In a camera network, the problem formulation is similar to the

method above. However, some significant differences should be
noticed. We assume that an edge only exists between two con-
secutive time steps excluding the source and sink nodes in a single
camera. This is because a target’s motion can be seen continuously.
However, such an assumption is not valid for non-overlapping
views because of the blind area between camera views. Thus the
definition of f ij in Eq. (9) is redefined as

f i;j ¼
1; if there is an admissible association between

the nodes i and j within a time window;

0; otherwise:

8><>: ð15Þ

In the network flow in a single camera, a target is seen as a node
in every camera. Since the tracklet fusion can be done as stated
above, all the observations of the same target are seen as one node
in the new network flow framework. Such a simplification can
guarantee that Eq. (10) is satisfied. An example of the network flow
framework of a camera network can be seen in Fig. 4. The link from
the second node at time 1 to the first node of time 3 is because of
the blind area between Ca and Cb. Note that a node in camera a can
have an edge with another node in the same camera since a target
might leave the camera view and return back to the same camera.

The similarity between two observations is defined as

S OCb
j ;O

Ca
i

� �
, where OCa

i denotes the observation of tracklet i in cam-

era a. Cb can be any camera including the camera Ca.
The overall problem for tracking multiple interacting targets in

a camera network can now be rewritten as a linear programming
one.



Fig. 4. A network flow framework for a simple graph in a camera network. The
purple nodes with solid lines represent the single target, the blue nodes with solid
lines represent the group target, and the blue nodes with dotted lines are virtual
nodes. To keep the graph clean, we only show one example of two non-consecutive
nodes from camera a in time interval 1 to camera c in time interval 3. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

S. Zhang et al. / Computer Vision and Image Understanding 134 (2015) 64–73 69
Minimize
X

j
� log SstartðOCa

i Þ
n o

f start;jþ
X

i;j
� log S OCb

j ;O
Ca
i

� �n o
f i;j

þ
X

j

� log SendðOCc
i Þ

n o
f j;end

s:t: f i;j P 0; f start;i P 0; f i;end P 0 8ði; jÞ 2 E;

f i;j61; f start;i61; f i;end61 8ði; jÞ 2 E;X
k
f j;kþ f j;end� f start;jþ

X
i

f i;j

 !
60;X

k
f k;end�

X
i

f start;i60

ð16Þ

where Sstart OCa
i

� �
represents the probability that the observation i in

camera a is the starting point of a track and Send OCc
i

� �
representing

this observation in camera a is the last observation of a track.

3.2. Solution of the linear programming problem

The problem in Eq. (16) is similar to a linear programming
formulation with discrete variables. A similar problem has been
studied in [42–45]. However, ours is the first work that addresses
the problem of tracking multiple interacting targets, i.e., both indi-
viduals and groups, into the network flow graph, and makes the
problem different from existing works. Moreover, we work on a
camera network with both overlapping and non-overlapping views
while handling the relationships between individuals and groups.
We realize that though the integer program (IP) can be solved by
any generic IP solver, the size of the NP-complete problem makes
the solution impractical. Such a problem is also known as a mixed
integer programming problem [46]. Though the branch and
bound algorithm has been proved to effectively solve such a prob-
lem, recent studies [43] have shown that the complexity of this
problem can be reduced by reformulating the problem to a similar
problem that approximates the original. The relaxed problem is
called the k-shortest node-disjoint paths (KSP) problem on a
directed acyclic graph (DAG).

Let H denote the feasible solutions of the problem in Eq. (16).
Thus the optimal solution f� is rewritten as

argminf2H

X
a;b;i;j

c ea;b
i;j

� �
f i;j ð17Þ

where

c ea;b
i;j

� �
¼ � log S OCb

j ;O
Ca
i

� �n o
� log Sstart OCa

i

� �n o
� log Send OCa

i

� �n o
.

The optimal solution in Eq. (17) can be obtained as in [43]. We
first run KSP on a single camera assuming the group state of each
target is known. Then we add the shape and appearance features
and the time gap constraints into the KSP in the camera network
tracking scheme. The KSP is rerun and the optimal solution Eq.
(17) is obtained. A detailed implementation will be provided in
the experimental section.
4. Experiment

4.1. Dataset

We perform experiments on the public VideoWeb dataset [11]
to assess the effectiveness of our tracking system. It contains both
overlapping and non-overlapping views and complex target inter-
actions. In VideoWeb dataset, each scenario has 8 cameras. There

are totally 8
2


 �
¼ 28 camera pairs per scenario. Among them, 12

pairs have overlapping views and the rest 16 pairs do not share
overlapping views with each other. Each scenario has at least 8
persons walking into different camera views. Each video lasts for
4–6 min. 17 challenging scenarios are selected to test our algo-
rithm. We use 7 scenarios for training and the remaining for test-
ing. So totally 80 video sequences are used for testing our
algorithm where the total video duration is around 350 min and
the number of persons is 91. Each video sequence records real-
world scenes with complex human activities that are present most
of time. The dataset has many challenging scenarios, e.g., people
interact with each other while merging to a group and then split-
ting; people leave a camera view and then come back after a long
time; people stay in a cluttered scenario with heavy occlusions. We
use 8 cameras to test our tracking algorithm on a camera network
while [1,2,4] used 5, 4, 2 cameras respectively.
4.2. Feature similarity

There are three equations, (12), (16) and (17), where calculation
of feature similarity is involved. In the tracking scheme, the opti-
mal solution f� depends on the flow cost in Eq. (17), where the flow
cost is defined as a negative logarithm of a feature similarity score
S. In Eq. (12), the similarity score is defined as the motion affinity
between the features of two tracklets in a single camera. In Eq.
(16), feature similarity is necessary because the motion affinities
between two tracklets are not reliable. The view and pose of a
tracklet can change significantly in different cameras. It is possible
that a merge/split event may happen in the blind area between the
two camera views. Since the SNT can decide the group state of a
tracklet in any camera, in general, two cases need to be considered
when calculating feature similarities: two observations are recog-
nized as individuals and at least one observation is recognized as
a group.

Individual tracklet association. If two observations are recognized
as two individuals, we use a linear combination of appearance in
HSV space, histogram of oriented gradients (HoG) and pyramid of
histograms of orientation gradients (PHoG) as the features of each
observation. Firstly, a brightness transfer function (BTF) is applied
to transform the appearance of a target from a camera to another.
We adopt the method of [2] which can incrementally learn the BTF
across cameras. With the transformed color features and the shape
features (HoG and PHoG), the feature distance between individuals
tracklets can be calculated by Bhattachayya distance which is
denoted by Bð:Þ. Thus, the feature similarity between two tracklets

is S OCb
j ;O

Ca
i

� �
/ ptran � exp �B OCb

j ;O
Ca
i

� �n o
, where ptran denotes the

transition probabilities between two cameras.



Fig. 5. Tracking recovering through clutter using individual-group switching mechanism. (a)–(c) are sorted by time. In (b), two persons who are marked by red cannot be
detected because of the occlusion. However, their identities can be found before the group merging in (a) and after the group splitting in (c).

Table 2
Single camera tracking results.

PR (%) TF IDC

Cam 16 67.0 3 1
Cam 17 89.2 8 4
Cam 20 93.0 2 1
Cam 21 74.6 9 9
Cam 27 85.5 7 6
Cam 31 81.4 15 8
Cam 36 89.6 7 4
Cam 37 83.1 10 5

Table 3
Multi-camera tracking results with both overlapping and non-overlapping views.

TL (%) XFG XIDS

Scene 1 79.6 4 3
Scene 3 80.0 6 4
Scene 4 81.5 4 4
Scene 5 77.3 5 3
Scene 6 79.0 5 4
Scene 7 78.7 5 3
Scene 22 75.6 7 6
Scene 23 76.3 8 7
Scene 24 79.9 6 6
Scene 25 77.1 8 7
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Group tracklet association. If at least one of the two observations
in two cameras is a group, two sub-cases should be considered. The
first sub-case is that there is no merge/split event in the blind
area between two cameras. This means that the same group
appears in these two linked cameras. The second sub-case is that
a merge/split event occurs in the blind area which makes the
targets in these two cameras different.

To associate group observations Gi and Gj, feature similarity
between two group regions should be calculated. Similar to
[29,30], the appearance and statistical properties of the group
region are represented by a covariance descriptor. Given the fea-
ture points fxigi¼1;...;NPI

where NPI is the number of pixels in the
group region, the covariance descriptor is

VG ¼
1

NPI � 1

XNPI

i¼1

ðf i � lGÞðf i � lGÞ
T
; ð18Þ

where lG is the mean feature vector of these NPI feature vectors. The
feature similarity between two groups in cameras a and b is com-
puted based on their covariance descriptors VGi and VGj between
two cameras a and b, i.e.,

S GCa
i ;G

Cb
j

� �
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i
ln2ki VCa

Gi
;VCb

Gj

� �r
; ð19Þ

where fkig are the generalized eigenvalues of the two group covari-

ance matrices CCa
Gi

and CCb
Gj

.

If S GCa
i ;G

Cb
j

� �
is larger than a given threshold, we consider GCb

j is

a good candidate match to GCa
i . Otherwise, the two groups are rec-

ognized as different. If no group matches GCa
i , it is highly possible

that a merge/split event occurred in the blind area. The number
of individuals in two groups are estimated according to the detec-
tions in the group. The algorithm to associate group tracklets is
listed in Algorithm 1. Given a group tracklet Gi in Ca, the goal of this

algorithm is to find a correspondence T Cb
j which is the best match

to GCa
i . Note that we use T j to represent a candidate tracklet

because the candidate can be an individual tracklet. Even if T j is
an individual tracklet, the same method can be applied.

Algorithm 1. Group tracklet association.
4.3. Group detection evaluation

VideoWeb dataset is very rich in interaction activities. Every
video sequence has around 8 merge events and 7 split events on
average. Our training samples are video frames of crowded scenes,
which contain both individuals and groups. The group and indi-
vidual labels of the bounding boxes are manually annotated
according to the ground truth for training. During the training,
SVM is trained upon the pedestrians’ distance features developed
based on their bounding boxes. Every camera view is trained
separately because the average sizes of pedestrians are different
in different camera views. For every camera view, we selected 4
video sequences for training. Each video sequence contains indi-
viduals and pedestrian groups where the ground truth is available.
In the testing phase, among 80 video sequences, we obtain 3188
groups totally. After tracklet association, 1513 groups are obtained.
This means that 1675 groups are associated using the optimization
framework in Section 3. The number of people detected per group



Table 4
Comparison of the proposed SNT algorithm with some existing methods.

TL (%) XFG XIDS

[2] 63.0 150 111
[3] 65.0 135 129
Proposed method 78.5 58 47
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varies from 2 to 8 depending upon the scenario. In Fig. 5, an exam-
ple shows that though individuals cannot be recognized in the high
clutter, their identities can be recovered after the group splits into
individuals.

4.4. Tracking performance evaluation

There are no standard evaluation metrics for a multi-camera
tracking scheme, though single camera tracking evaluation metrics
have been studied for years [47]. We adopt the evaluation metrics
in [48] to fairly evaluate our results because it introduces both
single camera and multi-camera evaluation metrics. In the
single-camera evaluation, PR (precision), IDC (ID change) and TF
(track fragmentation) are adopted. Three metrics are used for the
Fig. 6. Representative multiple interacting targets tracking results in a camera network
different cameras. Different colors of lines with arrows represent how a target moves
cameras.
multi-camera tracking evaluation: TL (trajectory length), XFrag
(crossing fragments in two different cameras) and XIDS (crossing
ID-switches in two cameras).

To the best of our knowledge, there is no existing tracking work
based on this public dataset. Comparisons with other multi-camera
tracking methods like [1,4] are not feasible as the goals of the
algorithms presented there were very different from ours and,
therefore, cannot be applied to the Videoweb dataset. Thus, we
evaluate our results with respect to the ground truth. We also
show comparisons with [2,3]. The average results on all the ten
testing scenarios are provided in Table 4.

We first run a particle filter to associate detections into track-
lets. After tracklet fusion across overlapping views, the SNT is
run to obtain single camera tracking results, the average of which
are shown in Table 2. According to the results, our tracker is able to
obtain a good precision while the number of track fragmentation
and ID change are small. The precision of camera 16 is low as there
are many misdetections in this camera view.

The multiple interacting targets tracking results in a camera
network are shown in Table 3. We present the results on every sce-
nario we worked on to better represent the performance of our
camera network tracker on different scenes. A high trajectory
. The horizontal axis represents the time step while the vertical axis illustrates 8
over time, while straight dotted lines show the same target observed by different



72 S. Zhang et al. / Computer Vision and Image Understanding 134 (2015) 64–73
length with low crossing fragments and crossing ID switches in
each scene shows the advantage of the proposed algorithm.

Representative tracking results are provided in Fig. 6. Among
the 6 time steps, there are totally 7 persons appearing in the scene.
Typical scenarios are listed below.

� t1: Person 2 and 12, who can be observed by C21, stay
individually.
� t2: Person 2 and 12 interact with each other and person 12 can-

not be observed by any camera. The SNT outputs the ID of these
two persons as a group 20. The person who stays within the
group 5 at t1 leaves the group at t2 with the ID 3.
� t3: Person 3 interacts with the group 20, and finally merges to a

new group 24. The track of person 10 starts in C20.
� t4: Group 24 can be observed by C17;C21;C31 at t3 and t4. Person

10 walks into the view of C16;C17;C21;C31;C36 and C37 at t4, in
which full body detections in C17; C31;C36 and C37 are obtained
by a person detector.
� t5 and t6: Person 10 and person 3 merge into group 29 at t5, and

walk into the view of C27 at t6.

The results show that the track IDs of the same target in over-
lapping camera are the same, e.g., person 10 and person 12.
Another observation is that though only parts of a group (an indi-
vidual) are observed in some camera, the weighted voting scheme
is able to find the correct group state. For instance, at t3, the group
24 can be fully observed in C21 and C31. However, only one person
can be observed by C17 while a group ID is assigned to this person.
A similar example is illustrated in group 29 at t6. A failure case is
represented by red dots where missing detections lead to tracks
loss.
5. Conclusion

We have addressed the problem of tracking in a camera net-
work where there are individuals and groups interacting. A struc-
tural SVM model was proposed to discriminate between
individuals and groups. Observations in overlapping cameras were
fused, and associations between those in a camera network were
calculated. Formulating the problem of the camera network track-
ing as a network flow model, a standard linear program problem is
obtained. An efficient K-shortest paths algorithm is used to per-
form robust multi-object tracking. Experimental results on a very
challenging public dataset show the robust performance of our
tracking system.
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