
Supplementary Material

I. Proof of Theorem 1

Figure 1: Pictorial representation depicting imaging framework.

We first define some notation required for our derivation. Let A and B represent the same object
before and after deformation respectively, as shown in Fig. 1. The ray from the optical center to a
particular pixel (x, y) intersects with the surface of the object at some point. Before the object’s defor-
mation, the ray intersects with the surface at C(u1, v1, t1) (on A), and after deformation, it intersects at
C(u2, v2, t2) (on B). During the deformation, C(u2, v2, t1) (on A) evolves to C(u2, v2, t2) (on B). Note
that C(u2, v2, t2) may not overlap with C(u1, v1, t1) - they are just on the same projection ray.

In [1], the authors show that, when a rigid object is fixed with respect to the camera, the reflectance
image can be represented by a linear combination of a set of basis images. The basis images for each
pixel can be expressed as

bi(Nj) = ρjriYi(Nj), i = 0, 1, . . . , Nl (1)

where ρ encrypts the surface reflectance property at the reflection point, Yi is the spherical harmonics
function, and ri is a constant for each spherical harmonics order. Each bi is the image appearance bases
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vector of order i, i = [0, Nl], with a length of (P × Q), the number of pixels in the image. Assuming
each bi is a column vector, and concatenating Nl such bases column by column, we can form the Bl,
which is of size (P ×Q)×Nl.

From (1), we see that when the illumination coefficients, li, are known, only the norm and the re-
flectance of the surface point of interest affect the reflection intensity at a particular pixel. The difference
between N (u1, v1, t1) and N (u2, v2, t2) consists of two parts. The first part is the spatial change from
N (u1, v1, t1) toN (u2, v2, t1), while the second part is the temporal change due to the deformation from
N (u2, v2, t1) to N (u2, v2, t2). Both of these two parts are caused, and could be expressed analytically
in terms of the motion and deformation parameters. The change of the texture, similarly, could be ex-
pressed in terms of the motion, deformation, and texture variation parameters too. Substitute all these
variations into Eq. (1), we can have the analytical expression of the image appearance space in terms of
these parameters. In our derivation, we will first show how to compute the spatial change, then combine
it with the temporal change and finally the computation of the basis tensors which will lead to the proof
of Theorem 1.

Computation of Spatial Change Parameters
Let us now introduce a subscript w to denote the variables in the world reference frame. Since

Cw(u1, v1, t1) and Cw(u2, v2, t2) are on the same ray (see Fig. 1), we can represent the difference between
them using a unit vector r under the perspective camera model as

Cw(u2, v2, t2)− Cw(u1, v1, t1) = kr, (2)

where k is a scalar. The transformation between the world frame and the object frame can be written as

Cw(u1, v1, t1) = RC(u1, v1, t1) + T,

Cw(u2, v2, t2) = ∆RRC(u2, v2, t2) + ∆T + T, (3)

where T and R are the translation and rotation matrix from the object reference frame to the world
reference frame, while ∆T and ∆R are the translation and rotation matrix of the object in the world
reference frame between t1 and t2. Using the equations (3),(4) and (5) in the paper, the evolution of the
object surface can be rewritten in a discrete format as

C(u2, v2, t2) = C(u2, v2, t1) + bT
d (t1)Φd(u2, v2)N (u2, v2, t1)∆t. (4)

Under Assumption (A1), which implies that the deformation between the two consecutive frames is
small, the point C(u2, v2, t1) should be close to the point C(u1, v1, t1). Thus, we may alternatively
consider that the new point C(u2, v2, t1) is on the tangent plane that passes through the point C(u1, v1, t1),
i.e.,

C(u2, v2, t1) = C(u1, v1, t1) + (Tu|u1,v1,t1 , Tv|u1,v1,t1)∆, (5)

where Tu|u1,v1,t1 represents the unit tangent vector along the direction of u at (u1, v1, t1), and ∆ repre-
sents the difference in the surface parameters (u1, v1) and (u2, v2). After a series of manipulations and
using Assumption (A1) (see Section II of this document), we have

A∆ = (I− R−1rNT

NTR−1r
)(Ĉ1∆Ω−R−1∆T−NΦT

d bd(t1)∆t),
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where

A = (I− R−1rNT

NTR−1r
)(bT

d (t1)ΦdJN∆t +NbT
d (t1)∇Φd∆t) + (Tu|t1 , Tv|t1), (6)

and Ĉ1 denotes the skew symmetric matrix of vector C(u1, v1, t1). Note that in (6), Tu, Tv,N ,JN ,R, r
are computed at t1 and Φd,∇Φd are constants in time. The first term (I − R−1rNT

NTR−1r
)(bT

d ΦdJN∆t +
NbT

d ∇Φd∆t) ∼ O(∆t), while the second term (Tu|t1 , Tv|t1) ∼ O(1). Thus, using Assumption (A1)
that ∆t is small, the first term on the right hand side of the expression of A in (6) can be ignored with
respect to the second term. Consequently, the solution of ∆ can be written as

∆ = (Tu, Tv)+(I− R−1rNT

NTR−1r
)(Ĉ1∆Ω−R−1∆T−NΦT

d bd(t1)∆t)

, D∆Ω + E∆T + Fbd(t1)∆t. (7)

and (Tu, Tv)+ indicates the pseudo inverse of the non-square matrix (Tu, Tv).

Computation of Basis Tensor
Next, we will compute the variation of the surface normal, and the variation of the basis ten-

sor as a function of surface normal. As we have shown above, the difference between N (u1, v1, t1)
and N (u2, v2, t2) consists of two parts. The first part is the spatial change from N (u1, v1, t1) to
N (u2, v2, t1), while the second part is the temporal change due to the deformation from N (u2, v2, t1)
to N (u2, v2, t2). Using Assumption (A1), ∆t is small, thus the temporal change can be approximated
with a first order Taylor expansion. Due to the same reason, ∆ should be a small term (in fact, in (7) we
show that ∆ ∼ O(∆t)). Thus we can approximate the spatial change with a first order Taylor expansion
at C(u1, v1, t1). Thus we can express the change in norm as

∆N = N (u2, v2, t2)−N (u1, v1, t1) = JN|u1,v1,t1∆ +
∂N (u2, v2, t)

∂t
|t1∆t, (8)

where JN |u1,v1,t1 is the Jacobian matrix of the norm, N (u, v, t), with respect to the parameters (u, v) at
point C(u1, v1, t1). The term ∂N (u2,v2,t)

∂t ∆t is the temporal change of the N (u2, v2).
Similarly, for the texture change, we have

ρ(u2, v2, t2) = Φρ(u2, v2)×ρ bT
ρ (t2)

= (Φρ(u1, v1) +∇Φρ|u1,v1∆)×ρ bT
ρ (t2), (9)

Thus, ∆N and ρ(u2, v2, t2) can be substituted into the expression for the basis images in (1), which can
be rewritten as

bi(u2, v2, t2) = ((Φρ(u1, v1) +∇Φρ|u1,v1∆)×ρ bρ(t2))riYi(N (u1, v1, t1) + ∆N )
= ((Φρ(u1, v1) +∇Φρ|u1,v1∆)riYi(N (u1, v1, t1))

+Φρ(u1, v1)ri∇Yi|N (u1,v1,t1)∆N )×ρ bρ(t2) + O(∆2). (10)

The last term is a higher order term of ∆, which can be ignored.
When there exists both rigid motion and deformation, the temporal change ofN (u2, v2) from t1 to t2

consists of two parts: one due to the deformation, and one due to the rotation. In (8), using Assumption
(A1) to neglect the terms O(∆t2) with respect to O(∆t) and Assumption (A3) for smooth deformation
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(see Section III of this document), we can derive the first part of the temporal change of norm from
equation (3) in the paper purely due to deformation, i.e.,

∂N
∂t
|u2,v2,t1∆t|∆Ω=0 ≈ − (JN (C|(u1, v1, t1))JN (Φd|(u1, v1)))

T bd(t1)∆t. (11)

Using assumption (A1), the second part of the temporal change due to the rigid rotation by ∆Ω is

∂N
∂t
|u2,v2,t1∆t|bd=0 ≈ −N̂ |u1,v1,t1∆Ω. (12)

Thus, substituting (11), (7),and (12) back into (8) and (9), the change of the norm and ρ can be expressed
as

∆N = (JN |u1,v1,t1D− N̂ |u1,v1,t1)∆Ω + JN |u1,v1,t1E∆T

+(JN |u1,v1,t1F−∇C|u1,v1,t1∇Φd|Tu1,v1,t1)bd∆t. (13)

Thus, both ∆N and ∆ are linear functions of ∆T, ∆Ω and bd. Substituting back into (10), and using
tensor notation, we will have the equation (6) in the paper in Theorem 1. ¤

II. Derivation of (6)

Substituting (5) and (3) into (2), we have

∆R(C(u1, v1, t1) + bT
d Φd(u2, v2)N (u2, v2, t1)∆t + (Tu, Tv)∆− C(u1, v1, t1) = kR−1r−R−1∆T. (14)

Using assumption (A1), ∆ should be small, thus we can apply Taylor expansion and have

bT
d Φd(u2, v2) = bT

d Φd(u1, v1) + bT
d ∇Φd|u1,v1,t1∆,

N (u2, v2, t1) = N (u1, v1, t1) + JN|u1,v1
∆. (15)

Thus, bT
d Φd(u2, v2)N (u2, v2, t1) can be expressed as

(
bT

d Φd + bT
d ∇Φd∆

)
(N + JN∆) = bT

d ΦdN + bT
d ΦdJN∆ +NbT

d ∇Φd∆ + o(∆), (16)

where all the terms are computed at (u1, v1, t1). Using reasoning similar to (16), the last term is a high
order term thus can be ignored. Using (16) to approximate bT

d Φd(u2, v2)N (u2, v2, t1), we have
(
∆R (Tu, Tv) + bT

d Φd∆RJ∆t + ∆RNbT
d ∇Φd∆t

)
∆

= (I−∆R)C(u1, v1, t1)− bT
d Φd∆RN∆t−R−1∆T + kR−1r, (17)

where all the N ,JN , Φand∇Φ are at (u1, v1, t1) and subscripts are discarded. Solving for k, we have

k ≈ NTR−1∆T +NT(I−∆R−1)C(u1, v1) + bTΦ + (bTΦNTJN + bT∇Φ)∆
NTR−1r

. (18)

Substituting back into (17), we have (6).
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III. Derivation of (11)

As

N =
∂C
∂u × ∂C

∂v

‖∂C
∂u × ∂C

∂v ‖
=

Cu × Cv

‖Cu × Cv‖ =
ĈuCv√CT

v ĈT
u ĈuCv

, (19)

where Ĉ denote the skew symmetric matrix with entries




0 −C(3) C(2)

C(3) 0 −C(1)

−C(2) C(1) 0


, and the superscript

C(1) indicates the first dimension of the vector. Taking the partial derivative of N with respect to t, we
have

∂N
∂t

=
∂Ĉu
∂t Cv + Ĉu

∂Cv
∂t√CT

v ĈT
u ĈuCv

− ĈuCv
∂(CTv ĈTu ĈuCv)

∂t

2(CT
v ĈT

u ĈuCv)
3
2

. (20)

Taking the partial derivative of (4) in the paper with respect to u and v, and assuming ∂2C
∂u∂t and ∂2C

∂t∂u
exist and are smooth (which is assumption A3), we have

∂2C
∂u∂t

=
∂β

∂u
N + β

∂N
∂u

= βuN + βNu =
∂Cu

∂t
,

∂2C
∂v∂t

=
∂β

∂v
N + β

∂N
∂v

= βvN + βNv =
∂Cv

∂t
. (21)

As the skew symmetric matrix Ĉ is linear with respect to the original vector C, we have

∂Ĉu

∂t
= βuN̂ + βN̂u,

∂Ĉv

∂t
= βvN̂ + βN̂v. (22)

Substitute (21) and (22) back into the numerator of the first term in the right hand side of (20), we have

∂Ĉu

∂t
Cv + Ĉu

∂Cv

∂t
= (βuN̂ + βN̂u)Cv + Ĉu(βvN + βNv)

= βuN̂ Cv + βN̂uCv + ĈuβvN + ĈuβNv

= βuN × Cv + βNu × Cv + βvCu ×N + βCu ×Nv. (23)

Similarly, the numerator of the second term in the right hand side of (20) can be simplified as

∂(CT
v ĈT

u ĈuCv)
∂t

= (βvNT + βNT
v )ĈT

u ĈuCv + (βuCT
v N̂T + βCT

v N̂T
u )ĈuCv

+(βuCT
v ĈT

u N̂ + βCT
v ĈT

u N̂u)Cv + (βvCT
v ĈT

u ĈuN + βCT
v ĈT

u ĈuNv). (24)

Note that
NTĈT

u ĈuCv = (Cu ×N )T(Cu × Cv). (25)

Because Cu ‖ Tu and Cv ‖ Tv, thus (Cu×N )⊥N while (Cu×Cv) ‖ N . Consequently, the inner product
between the two terms in (25) is zero. Similarly, we have

CT
v N̂TĈuCv = CT

v ĈT
u N̂ Cv = CT

v ĈT
u ĈuN = 0. (26)
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Thus, (24) can be simplified as

βNT
v ĈT

u ĈuCv + βCT
v N̂T

u ĈuCv + βCT
v ĈT

u N̂uCv + βCT
v ĈT

u ĈuNv

= β(Cu ×Nv)T(Cu × Cv) + β(Nu × Cv)T(Cu × Cv)
+β(Cu × Cv)T(Nu × Cv) + β(Cu × Cv)T(Cu ×Nv))

= 2β(Cu × Cv)T(Cu ×Nv +Nu × Cv). (27)

Thus, substituting (23) and (27) back into (20), we have

∂N
∂t

=
βuN × Cv + βvCu ×N

‖Cu × Cv‖ + β
‖Cu × Cv‖2I− (Cu × Cv)(Cu × Cv)T

‖Cu × Cv‖3
(Cu ×Nv +Nu × Cv) . (28)

Because Nu ‖ Cu and Nv ‖ Cv, thus (Cu ×Nv) ‖ (Nu × Cv) ‖ N . Let Cu ×Nv +Nu × Cv = pN and
Cu × Cv = qN , where p and q are scalars. Thus the second term in the right hand side of (28) becomes

β
q2pN − q2NNTpN

q3
= β

q2pN − q2pN
q3

= 0. (29)

Thus, (28) can be simplified as

∂N
∂t

=
βuN × Cv + βvCu ×N

‖Cu × Cv‖ . (30)

Thus, if βu = 0 and βv = 0, the surface evolve isotropically, and the norm does not change over
deformation. By choosing proper parameters u and v, we can let ‖Cu‖ = 1, ‖Cv‖ = 1, and Cu ⊥ Cv. Use
this set of parameterization and assume the right hand coordinate system to be (u× v) ‖ N , (30) can be
simplified as

∂N
∂t

= −(βuCu + βvCv). (31)

Thus, the second term in the right hand side of (8), i.e., temporal change of norm due to the defor-
mation, can be simplified as

∂N
∂t
|u2,v2,t1∆t = −(bT

d ΦuCu + bT
d ΦvCv)|u2,v2,t1

= −(Cu, Cv)|u2,v2,t1

(
ΦT

u

ΦT
v

)
|u2,v2,t1bd

= −JN (C|(u, v))|(u2,v2,t1)JN (Φ|(u, v))|T(u2,v2,t1)bd. (32)

Due to the fact that the change of the norm is not affected by the texture variation, for the simplicity of
notation, we use Φ to denote Φd in the Appendix B. Substituting

JN (C|(u, v))|(u2,v2,t1) = JN (C|(u, v))|(u1,v1,t1) +
∂JN (C|(u, v))

∂(u, v)
|(u1,v1,t1) ×3 ∆,

JN (Φ|(u, v))|(u2,v2,t1) = JN (Φ|(u, v))|(u1,v1,t1) +
∂JN (Φ|(u, v))

∂(u, v)
|(u1,v1,t1) ×3 ∆,

(33)
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into (32), we have

∂N
∂t
|u2,v2,t1∆t = −(JN (C|(u, v)) +

∂JN (C|(u, v))
∂(u, v)

×3 ∆)

(
JN (Φ|(u, v)) +

∂JN (Φ|(u, v))
∂(u, v)

×3 ∆
)T

b

= −JN (C|(u, v))JN (Φ|(u, v))Tbd

−JN (C|(u, v))
(

∂JN (Φ|(u, v))
∂(u, v)

×3 ∆
)T

bd

−∂JN (C|(u, v))
∂(u, v)

×3 ∆JN (Φ|(u, v))Tbd

−∂JN (C|(u, v))
∂(u, v)

×3 ∆
(

∂JN (Φ|(u, v))
∂(u, v)

×3 ∆
)T

bd. (34)

From (7), we know ∆ = O(∆t). In addition, as bd = O(∆t), the first term in the right hand side of (34)
is O(∆t) while the other terms are O(∆t2). Using assumption A2, we can neglect O(∆t2) with respect
to O(∆t), and (34) becomes,

∂N
∂t
|u2,v2,t1∆t ≈ −(JN (C|(u, v))JN (Φ|(u, v))Tbd. (35)

Globally multi-linear subspace

A piecewise multi-linear manifold can be embedded into a higher dimensional globally multi-linear
subspace.

Outline of the Proof: Without loss of generality, we prove the case of piecewise bilinear manifold.
Assuming we have a collection of locally bilinear manifold in the form of Bj ×1 a×2 b, where j is the
indicator of the local manifold, and j = 1 . . . J . This piecewise manifold can be embeded into




B1 0 · · · 0
0 B2 0
...

. . .
...

0 0 · · · BJ


×1




a1

a2
...

aJ


×2




b1

b2
...

bJ


 , (36)

where a1 to aJ and b1 to bJ are the same size of a and b. The jth piece of manifold can be obtained by
setting all the as and bs except aj and bj to be zero, while (36) forms a globally bilinear subspace.
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