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Abstract—Study of the molecular control of organ growth requires establishment of the causal relationship be-

tween gene expression and cell behaviors. We seek to understand this relationship at the shoot apical meristem 

(SAM) of model plant Arabidopsis thaliana. This requires the spatial mapping and temporal alignment of differ-

ent functional domains into a single template. Live cell imaging techniques allow us to observe real time organ 

primordia growth and gene expression dynamics at cellular resolution. In this paper, we propose a framework 

for measurement of growth features at the 3D reconstructed surface of organ primordia, as well as algorithms for 

robust time alignment of primordia. We computed areas and deformation values from reconstructed 3D surfaces 

of individual primordia, from live cell imaging data. Based on these growth measurements, we applied a multi-

ple features landscape matching algorithm (LAM-M), to ensure a reliable temporal alignment of multiple pri-

mordia. Although the original landscape matching algorithm (LAM) motivated our alignment approach, it some-

times fails to properly align growth curves in the presence of high noise/distortion. To overcome this shortcom-

ing, we modified the cost function to consider the landscape of the corresponding growth features. We also pre-

sent an alternate parameter free growth alignment algorithm which performs as well as LAM-M for high quality 

data, but is more robust to the presence of outliers or noise. Results on primordia and guppy evolutionary growth 

data show that the proposed alignment framework performs at least as well as the LAM algorithm in the general 

case, and significantly better in the case of increased noise. 

Index Terms— Growth alignment, Algorithms, Growth Alignment,  Growth Feature Measurement.  

——————————      —————————— 

1 INTRODUCTION

DVANCES in live cell imaging techniques such as 
those developed in [20] present opportunities to 

tackle important plant development questions. Live 
imaging allows us to investigate the causal relation-
ship between cell behavior, organ growth and genes 
that work in networks. This is possible because with 
live imaging, we are able to observe in real time, organ 
primordia growth and gene expression dynamics at 
cellular resolution. In this paper, we present a frame-
work for quantitative study of primordia growth at the 
shoot apical meristem of Arabidopsis, (shown in Fig.  
1. ), based on live imaging data. In doing so, we pre-
sent algorithms for temporal alignment of primordia 
growth data and any other developmental growth data 
for that matter. Time synchronization is often a neces-
sary step in any meaningful analysis of time lapse da-
ta. Time lapse data generated from live imaging exper-
iments is very noisy and often requires robust time 
synchronization for reliable deduction of these rela-
tionships.  

In addition to plant biology, a similar problem is 
faced in other areas of science including biological and 
medical sciences, where experimental data is often 
very large and usually unsynchronized.  

 

Fig.  1. Location of the Shoot Apical Meristem in model plant Ara-

bidopsis thaliana. (A) Location of SAM. (B) Detailed view of SAM 

showing multiple primordia (P1-P5) at different developmental 

stages. (C) Illustrative sample of 3 out of 23 slices from an imaging 

session. White circles indicate location primordia per slice. 

 

Quantitative time series data generated from these ex-
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periments is sometimes collected through the meas-
urement of interesting variables over varying 
timeframes.  Such measurements and subsequent 
analysis are essential in efforts to gain greater insight 
into biological systems.  

In the medical community, the study of multiple 
characteristics of human respiration can lead to the 
discovery of important dynamics in patient outcome 
studies [9],[28]. In order to achieve an acceptable level 
of reliability, such data needs to be properly time syn-
chronized across multiple patients. In proteomics stud-
ies, there is a need for quantitative comparison of mul-
ti-class Liquid chromatography-Mass spectrometry 
(LC-MS) data [3]. The very nature of data generation in 
LC-MS studies is itself a source of large variability. 
Given the degree of noise and variation, a robust 
alignment of generated time series is often a necessary 
step towards reliable multi-class comparison.  
One common and necessary requirement in these dif-
ferent domains and many others is the need to collect a 
large amount of unsynchronized data, properly align 
them and then perform further analysis.  

Although there has been a fair amount of progress 
in this problem domain, to the best of our knowledge, 
no one has looked at the applicability of similar tech-
niques in the study of plant development. Specifically, 
we do not know of any similar study applied to pri-
mordia growth dynamics at the shoot apex of Ara-
bidopsis thaliana. Given high resolution data, many 
existing techniques have proven to be reliable and ro-
bust. However our problem presents many challenges 
in the form of low resolution time series, with high 
variability. Specifically we are challenged by the fact 
that we have about 5 to 13 time points per observed 
event. With such low resolution, the effect of noise and 
variability can be greatly magnified. 

1.1 Main Contribution 

This paper makes four specific contributions in the 
study of biological growth at the level of the organ 
(e.g. primordia): 

 We show how to measure growth features 
from reconstructed 3D structures of organ 
primordia, based on live imaging data. (Sec-
tion 3.2). 

 We show the application of deformation field 
morphometry (DBM) for quantification of de-
formation at the surface of organs.  (Section 
3.2.2). 

 We present a modified landscape matching al-
gorithm for the alignment of low resolution, 
noisy time series using multiple features.  (Sec-
tion 3.3.2). 

 We present a parameter free growth alignment 
algorithm. (Section 3.3.3). 

1.2 Background 

Although a full biological description of the primary 
system under study is beyond the scope of this paper, 
we present a brief description and motivation for our 
work.   The  Shoot  Apical Meristem (SAM)  is made  
up  of stem-cells  that provide cells for the develop-
ment of all  above  ground  plant  structures.   The  or-
gan  primordia are  regions  of  the  SAM  that develop  
into  different  plant organs.  At each point in time, the 
SAM contains multiple primordia at different devel-
opmental stages, as shown in Fig.  1.B. The SAM is 
subdivided into different functional domains, with 
unique and overlapping gene expression patterns.   
Differential expression analyses have led to some un-
derstanding of the expression p a t t e r n s  of many 
SAM genes.   In [26], analysis o f  just 3 cell types re-
vealed more than 2000 genes with distinct and 
overlapping expression patterns. However, such an 
analysis is static and does  not provide t h e  dy-
namic context of observed p a t t e r n s .  It also does 
not provide t h e  relationship between observed 
expression pattern, cell-cell communications, 
cell expansion/growth rates and organ growth. 
 

 

Fig.  2. Live imaging data of clavata-3 gene expression 
showing expression rates at 0hr, 24hrs and 40hrs. 
Live-imaging techniques allow for real time observa-
tion of growing SAMs. Proper alignment allows for 
dynamic gene expression analysis that is invariant to 
spatiotemporal changes. Data from [19] 
 

Data for our project was collected using the live 
imaging technique developed i n  [20].   Live imag-
ing allows for real time observation of primordia 
growth at the resolution of the cell.  It also allows 
for real time observation of gene expression and cell 
division over a period of time, while the plant is alive 
and growing. These techniques use laser scanning 
confocal microscopy to obtain 3D volumes of SAM 
structure at different time  instances throughout 
an  observation period  (usually several  days),  
without  damaging the growing  plant.   With 
live-imaging, we are  able  to capture  the  dy-
namic context of discovered  genes,  as  illustrated  
in  the images  in  Fig.  2., which  were  published in  
[19].  Live imaging a l s o  allows for computational 
tracking of cell division patterns as in [13]. We are 
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proposing a framework that will lead to the 
possibility of performing dynamic analysis of 
live imaging and other growth data. Such an 
analysis will  be invariant to spatiotemporal 
changes in plant structure over time.  
Data collected at each time instance of live imag-
ing is in the form of a 3D stack of slices represent-
ing the view of the SAM at different focal planes 
from top to bottom.  

Analyzing primordia morphogenesis based on 
measurable growth features is an important prob-
lem t o  plant biologists.  It is important precisely 
because g e n e s  drive primordia  growth. As a re-
sult of this, biologists need to understand the 
spatiotemporal dynamics of the interaction be-
tween gene expression and p r i m o r d i a  growth. 
We seek to deduce t h e  principles underlying the 
relationship between gene expression, cell divi-
sion, c e l l -cell communication and overall primordia 
growth.   Such an understanding will move us a 
step c l o se r  towards developing a dynamic gene 
expression a t l a s  for the SAM of model plant Ara-
bidopsis thaliana. Working towards this goal (see 
big picture in Fig.  3), we solve two important 
problems: 

 Measurement of growth features at the sur-
face of primordia 

 Alignment of time series of growth features 
 

 

Fig.  3. Motivation for our study of growth at the SAM of Ara-

bidopsis thaliana.  Proper temporal alignment of growth data will 

allow for reliable development of dynamic models that integrate 

gene expression and quantitative data, both at the global (SAM) 

level and at the resolution of the cell. 

 

Given  the advantages of live imaging,  one might 
imagine that we could  just  label  all discovered 
genes  in a  single  plant and perform  our  analysis  
using  live-imaging.   We are however  limited in 
live imaging, because technical limitations mean we 
can only use 2 to 4 gene markers at a time.  As a 

direct result of this restriction, we cannot study 
more than a few genes at a time using a  single plant. 
Given  that there  are  thousands  of genes,  and  
there is variation in SAM size and  shape,  we 
must  perform  analysis  of different genes in differ-
ent plants, and then integrate the results into a 
common template.  Given that the SAM consists 
of multiple primordia at different developmental 
stages, time lapse data for a set of primordia have 
varying start and end times.  Such data needs to be 
time synchronized in order to properly perform 
r e l i a b l e  a n a l y s i s . This also  requires  complex  
alignments  and  comparisons  across plants which  
calls for computational tools for SAM growth  
analysis. For this reason, our study of automatic 
growth alignment is a necessary first step in this 
process. 

2 RELATION TO PREVIOUS WORK 

The na t ure  of the problem i n  our work is such  
that we are analyzing multiple agents per sub-
ject.  These agents are undergoing similar biological 
processes (growth), but at any given moment,  
they  are at different stages  of that process. The 
challenge does not only come from the variability 
across SAMs,  there  is also  great  variability  with-
in  the same  subject (SAM).   

In terms of measuring growth f e a t u r e s , there 
has been some work within the past de ca de  
[5],[7],[11]. Our work differs from these studies in 
many ways.  First of all our goal is to study t h e  
spatiotemporal dynamics of growth a n d  use  the 
output of our studies i n  the development of a dy-
namic model.  Secondly, our dataset is significantly 
different. In [5], they used replicas taken from the sur-
face of individual apex as input into their shape track-
ing system. In contrast, we use  live imaging  data 
that allows us to track gene expression at the 
resolution  of the cell,  while  they  used  replicas  
taken  from the surface  of each  individual apex  to 
track shape  changes.  In [7], similar imaging equip-
ment was used f o r  data collection.  However they 
used a  different technique in their live imaging 
experiment. Their  technique  differed  in the  sense  
that they  employed a multi-angle  image  acquisi-
tion  approach, and  then applied  an  image  re-
construction technique  that integrated  these  
images  into  a single  image with  better resolu-
tion.   They had a  24 hour t i m e  interval between 
observations, a constraint that was imposed by their ap-
proach. Such a long time window can present the 
risk of  missing s i g n i f i c a n t  growth dynamics.   In 
our ca se , we allowed 6 hour intervals between ob-
servations and took images from a single angle 
(horizontal).  With a 6 hour interval, attempting 
the imaging approach employed in [7] will be very 
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traumatic to the plant, which will most likely not 
survive  the adverse  effect of laser intensity. 

Our pro posed  system t a k e s  3D surface 
p o i n t s  as input. These points represent the re-
constructed 3D shape of primordia.  Since we are 
focused on the  study  of global  patterns in pri-
mordia growth,  any contour based 3D reconstruc-
tion scheme is suitable to use with the proposed 
framework. Many  image  reconstruction  tech-
niques  have  been  proposed in  the  past decades 
[1],[6],[14].   Methods like the classical Marching 
Cubes approach [14] or the more recent technique 
based on  the Multi-level Partition of Unity 
(MPU) models [ 1 ]  are examples of techniques 
that have been shown to produce acceptable re-
sults in many application domains. 

In this work, we further show how to compute lo-
cal surface deformation from 3D reconstructed live 
imaging data. Our approach to computing defor-
mation was inspired by the phenomenon of de-
formation based morphometry (DBM). Although 
DBM originated  from  solid  mechanics, it  has  
been  widely  embraced  in  the medical  imaging  
community to study  a variety m e d i c a l  condi-
tions.   For  example  DBM  has  been  applied  to 
study  the effects of alcoholism  in [21] , changes  in 
human  brain [17],[22] , as  well as  analysis  of gray  
matter deformation  in  [4]. The validity of many 
v a r i a t i o n s  of DBM has also been the focus of pre-
vious s t u d i e s  [8][23].  Although the adoption of 
DBM  in the bio-medical imaging  community has 
seen wide success,  the  approach has  never  before  
been  used  to study primordia development in  
the way  we are  proposing here. 

Another major problem w e  address in this paper is 
that of time series alignment.  In fact, we present two 
solutions for the temporal alignment of growth data, a 
task that is at the heart of this paper.  Time series 
alignment is a problem that has attracted signifi-
cant interest in the past. A widely adopted solu-
tion to this problem is  dynamic time  warping  
(DTW), an algorithm that has attracted interest 
from the data mining community [10],[27], alt-
hough it came about as a result of work in the 
speech recognition community.  Over the years, 
many variants of the DTW a lgor i t hm  have been 
developed [16]. However, the key  to most  of these 
is  the  utilization  of a robust cost  function,  in  
cases  of  high  variability  in  amplitude and time.   
In addition to DTW, there are other approaches that 
have yielded reasonable results [2],[12].  In  [2], a 
landscape  based  cost  function  was  applied   to 
develop  what  is referred to as  the Landscape 
matching  algorithm  (LAM). This m e t h o d  was 
used to align data from respiration patterns of mul-
tiple patients.  A statistics based  approach was em-

ployed  in [12], where multiple time series are  simul-
taneously aligned and eventually a latent trace was 
inferred  from the aligned  set.  This approach is very 
robust.   However, because our plant growth data has 
very low temporal resolution, we cannot guarantee the 
correctness of such an approach. Our approach to align 
varying length and noisy sequences is detailed in Sec-
tion 3.3. 

3 DETAILED METHODOLOGY 

In this section, we give a detailed presentation of the 
entire proposed framework, from growth measure-
ment, to eventual growth alignment of time lapse data. 
Although the primary goal of this paper is to present 
solutions for aligning growth data, we think for com-
pletion, it is important to give details on how we 
measure some of the features being aligned. 
3.1 Overview of Proposed Framework 

At any  moment in  time, the SAM  is made  up  of  
multi- ple  growing  primordia at different  stages  of  
growth.    The proposed framework   is designed to 
handle the analysis of primordia from different plants.   
As shown in Fig.  4, the system  is made up of two dis-
tinct modules:  the growth  computation module  
(GCM) and  the growth  alignment module (GAM). 
The GCM includes sub-modules to measure growth. 
For example in the study of primordia growth, the 
GCM sub-modules will play the role of measuring 
growth features at the surface of reconstructed pri-
mordia.  The output of this module is a time series  of  
primordia growth  measurement, for all plants under 
study. Once we have a collection of time series, the 
growth alignment module performs  a multiple series 
alignment on all the primordia.  Deformation values  
computed  by  the GCM  are  used  to improve  align-
ment results. 
 

 

Fig.  4. The proposed system is made up of the growth computa-

tion module (GCM) which performs growth measurements, and 

the growth alignment module (GAM). 

The next sections  will give details  on the methodolo-
gy used for growth computation, and the alignment of 
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measured features. 

3.2 Growth Measurement 

3.2.1 Surface Area Calculation 

     

 

 

Fig.  5. Sample input  into the system (left) is in the form of slice 

contours which are then used to reconstruct a smooth surface. Here 

we show a Matlab™ visualization of the reconstructed surface. 

 

Given a stack of boundary points representing a pri-
mordia, we use existing tools to generate a smooth sur-
face as shown in Fig.  5. The surface area of our recon-
structed primordia surface is computed by performing 
a Delaunay triangulation, and then taking a summa-
tion on the areas of the triangles. Summation of the 
areas of all these surface triangles gives us an accurate 
estimate of the surface area of the primordia. Although 
there are many ways of computing the area of a trian-
gle, we chose to use Heron’s formula for computing 
the area of our triangle. 

3.2.2 Deformation Computation 

One of the fundamental patterns biologists seek to 
understand is the variational nature of deformation on 
the surface of the organ over  time.  We cannot begin to 
deduce the dynamic nature of organ deformation 
without first of all deriving a quantitative representa-
tion of such activity. In  order  to solve  this, we used  
deformation  based  morphometry (DBM), an ap-
proach that has been widely adopted in the medical 
image analysis  community [4],[8],[17],[21],[22].  Our 
DBM approach is composed of three major steps: 

 Establish Point Correspondence between tar-
get surface T and source surface S, where T is 
the primordia surface at time t+1 and S is the 
same primordia surface at time t. 

 Compute deformation field based on point 
correspondences. 

 Quantify deformation by looking at the Jacobi-
an at each point on the surface. 

3.2.3 Finding Correspondences 

Optimal correspondence can be achieved  by solv-
ing  the registration problem  between  surfaces  S 
and  T .  This is done by addressing it as  an  opti-
mization  problem, where  the  goal  is  to mini-

mize some error functional.  Once we have 
our two point c louds properly registered,  we 
chose as optimal,  the correspondence that 
led to convergence in our  optimizat ion.  The  
approach  we  employed  is based  on  the well 
known  Iterative  Closest  Point (ICP) algorithm  
for rigid  registration  of point sets [ 1 5 ] . Given 
the system we use for pr imordia  growth data 
collection, surfaces generated from our data set are 
almost r e g i s t e r e d . This observation makes our da-
ta suited for use of the ICP algorithm, given its 
tendency to get stuck in local minima. Leveraging 
off the formalisms i n  [15], we now give a simple 
description of the basic I C P  a l g o r i t h m .    
 Given  an  initial state, our task is to minimize  
the sum of squared differences between  the trans-
formed target points and  their correspondences  
on  the  source  surface.   This i s  done by minimizing 
the error function 𝐸 , through an iterative process 
of computing correspondences and then optimiz-
ing the transformation parameters based  on 
these correspondences. 
 

𝐸 = 𝑚𝑖𝑛∑[‖𝑀(𝑇 ) − 𝑆 ‖
   ]

 

   

 

 
where 𝐸 , is the error  due to transformation M, 
and n is the number of correspondences and 𝑖 is the 
current correspondence from a point in 𝑇 to a point in 
𝑆. Note that each point on the target has a correspond-
ence to a point on the source surface.   

The first step in the process of finding the op-
timal correspondence is to compute the initial 
transformation parameters between the two 3D 
point c louds representing our surfaces.  Let the 
rotation parameter be  𝑟   and the translation pa-
rameter be  𝑡 .  Given these initial or current state 
parameters, the next step is using the current state to 
find new correspondences  C(     ). 

 

  𝐶(     ) = argmin[‖(𝑟 𝑇 + 𝑡 ) − 𝑠 ‖
 ] 

 
where   𝐶(     )   is the ith  correspondence between T and 
S. Based on these new correspondences, update 𝑟  and 
𝑡 , using the following equation 
 

[𝑟 𝑡] = 𝑎𝑟𝑔𝑚𝑖𝑛[‖(𝑟 𝑇 + 𝑡 ) − 𝑆 (     )
‖] 

where [𝑟 𝑡], is the updated rotation and tranlation pa-
rameters, based on previous state and correspondences 
computed from those previous values.  
 
If the transformation error due to the updated trans-
formation parameters is not less than a pre-set thresh-
old, repeat the process over  by  computing new  corre-
spondences based on current  transformation.   The 

Outlines of slices on stack Reconstructed Surface
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correspondence that leads to convergence  is selected 
as the optimal correspondence. 

3.2.4 Quantifying Deformation 

Once correspondence between points  on surfaces at 
time t and t + 1 have been established, we use 
these correspondences to derive a displacement 
field. Displacement fields are represented in the 
form of displacement vectors. The structural dif-
ference between t h e  two surfaces i s  encoded in 
this displacement field and this fact gives us a way to 
directly quantify deformation.   
  

 

Fig.  6. Sample plots of total deformation computed from four 

different primordia. Total deformation is calculated by taking the 

sum of deformation values at points on the surface. 

 

Given a displacement field from point correspond-
ences, we quantify deformation by evaluating the 
local change at the resolution of each point on the 
surface. This is done by taking the determinant of 
the Jacobian matrix 𝐷 at each surface point.  Let  
𝑈 be the displacement vector at point  𝑃(𝑥 𝑦 𝑧) on the 
target surface. The deformation at P is  defined as 
det (𝐷), where 𝐷 is defined as follows: 
 

𝐷 = 

[
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where  𝑈 is he displacement  vector  at the cur-
rent  point. A sample plot of total deformation 
over time for multiple primordia is shown in Fig.  
6. As expected, primordia initially exhibit little 
or no deformation, but that changes at later 
stages of growth.  

3.3 Growth Alignment 

In our proposed system, output from the GCM is a 
time series of surface areas (or another growth meas-
urement), computed for each primordia considered.  
Growth alignment as used in this paper refers to the 

temporal alignment of times series of growth meas-
urements for multiple primordia.  In all our experi-
ments, we will be aligning growth data from multiple 
objects. However, the fundamental step in all these is 
the alignment of one growth time series against anoth-
er. As such, our description of solutions for alignment 
of growth data will focus on alignment of two time 
series. After that, we will finally discuss how to apply 
these solutions as a sub-routine in the alignment of 
multiple time series. 
Now we give a high level presentation of the align-
ment problem addressed here.  
The Alignment Problem: 
 

 

Fig. 7. The alignment problem we seek to solve involves finding 

the shift St necessary to bring G2 into an alignment with G1, such 

that some cost function is optimized. 

 
Given two time series G1 and G2 , the growth alignment 
problem is defined as the task of finding the temporal 
shift St  , such that when applied to G2 , it leads to the 
best possible alignment of G2 to G1.  As shown in Fig. 
7.B, there are points in the two time series that are 
most similar and thus can be used as a basis for find-
ing the required shift. Fig. 7.C shows the expected out-
put, at least in this toy example, that is should come 
out of a good alignment. In this case, series G2  has 
been shifted by a factor of two in the temporal direc-
tion. Note that in Fig. 7.A and Fig. 7.B, G2 is plotted 
with a vertical shift of +5 to allow for easy display and 
illustration of the problem.  
This definition of our alignment problem requires that 
the most similar subsequences between the two time 
series fall within the overlapping region that resulted 
from applying the shift St to G2. What we have left now 
is to present our solution to this problem, given the 
application domain in consideration.  We now present 
two solutions to the problem of aligning low temporal 

D
e

fo
r
m

a
ti

o
n

(
u

m
)

Sample Deformation Plots for 4 Primordia

Time (hours)



TATAW ET AL.:  QUANTITATIVE ANALYSIS OF LIVE-CELL GROWTH AT THE SHOOT APEX OF ARABIDOPSIS THALIANA 7 

 
 
 

 

G2
G1

G1
* =  [28 29 36 40]

G2
* = [ 25 27 29 36]

= 3

G1
* =         [28 29 36 40]

G2
* =         [25 27 29 36]

Indices =  [  1   2   3    4]
Matches = [ 1  2]

1 2 3 4 5 6 7
0

20

40

60
Raw Feature 1 Plots

1 2 3 4 5 6 7
0

5

10

Raw Feature 2 Plots

1 2 3 4 5 6 7
-2

0

2
LAM Aligned

1 2 3 4 5 6 7
-2

0

2
LAM-M Aligned

A) B)

C)
D)

resolution time series, with a focus on the alignment of 
plant growth data. The first approach is built on the 
Landscape Matching algorithm (LAM), while the sec-
ond is a new parameter free alternative. 

3.3.1 Landscape Based Alignment 

We now give a brief review of the Landscape Matching 
(LAM) algorithm presented in [2].  This algorithm uti-
lizes a landscape vector 𝜆, calculated from the over-
lapping regions of the two series shown in Fig. 7.A, to 
calculate a matching score using  the following cost 
function from normalized values of 𝐺  and 𝐺  : 

 

𝑀(     ) = 𝑎𝑟𝑔𝑚𝑎𝑥 
 

  
∑

(    (  
       

 )( ))

      
 ( )      

 ( )  

  
    , 

 
where 𝐿  is the length  of the overlapping region,  𝜆 is 
the landscape vector, 𝐿  is the length of 𝐺 , 𝑠  is the 
temporal shift of the current iteration, and 𝐺  

  and 𝐺 
  

are the overlapping segments.  
This algorithm considers all possible temporal 

shifts, with the goal of maximizing the landscape func-
tion 𝑀(     ).  As we shift G2 across G1 from left to right, 

starting with an initial overlap, we get different match-
ing scores for resulting overlaps. The shift that leads to 
the highest matching score is selected as the required 
shift for the best possible alignment.  

In Fig.  8, we show an example of calculating 𝜆 from 
the overlapping regions of two time series. Calculation 
of 𝜆 requires us to set a threshold parameter 𝜃, within 
which we consider two corresponding points from the 
time series to be a match. The matching locations are 
then sorted in ascending order by time.  

 

 
Fig.  8. Calculating the landscape vector. The threshold is set to 3 

for this example. 

 
The first position in 𝜆 and any other index location 

that is not in the list of matching positions is set to 0. 
For the rest of the index locations in the overlapping 
regions, the values are set to the absolute difference 
between the value at the index position in G1, and the 

value of the prior matching index in G1.  

3.3.2 Multiple Features Landscape Based Alignment 

The LAM algorithm requires that the threshold pa-
rameter be meaningful, since the result of the land-
scape function is sensitive to this parameter, and as 
such the algorithm can sometimes be sensitive to noise 
and outliers. With this motivation in mind, we decided 
to generalize the LAM function so that it can be used 
for alignment based on multiple growth features. The 
intuition of this generalization is that, provided other 
features have a property that significantly discrimi-
nates different developmental stages for example; we 
could leverage such property to improve the align-
ment due to the first feature.  Consequently, a false 
positive due to noise from a single feature will be 
compensated by a strong match due to other features.  
 

 

Fig.  9. Plots showing an example where single feature LAM algo-

rithm fails to find the proper shift. By incorporating a second fea-

ture, LAM-M computed the correct shift. 

For multiple features, we want to find the shift such 
that the cumulative landscape function of all features 
is maximized.  For a particular feature fi , we define the 
new landscape function for normalized values of the 
time series as follows: 

 

𝑚  
=
1

𝐿 
∑

(1 + 𝜆    (         
 )(𝑛))

1 +   𝐺 
 (𝑛) − 𝐺    

 (𝑛)  

  

   

 

 
  The new cost function for multiple features is then 
defined as: 

𝑀 =∏𝑚  

 

   

  

 
This equation shows the new cost function for a multi-
ple-feature LAM, which for ease of presentation, we 
refer to as LAM-M.  The landscape vector for each fea-
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ture is still calculated in the same way, and the goal 
now is to maximize the joint landscape of all the fea-
tures.  
In Fig.  9, we show an example where the basic LAM 
algorithm fails to properly align two fairly similar time 
series. In Fig.  9.B, we also show raw plots for a second 
feature, in this case deformation curves. In Fig.  9.C, 
we show alignment due to the original LAM algo-
rithm, while in Fig.  9.D, we show how incorporation 
of multiple features leads to a correct alignment of the 
two time series. 

3.3.3 Parameter-Free Alignment 

Although the LAM algorithm works well, and our ex-
tension allows us to improve performance in the rare 
cases were LAM fails, we recognize two issues that 
could be problematic in some cases: first of all our data 
could be such that, the landscape function is too sensi-
tive to the threshold parameter lambda.  The second 
issue is that we might not have the luxury of a second 
meaningful corresponding feature.  For these reasons, 
we now present a parameter free simple alternative to 
the LAM algorithm.  

Our proposed parameter free algorithm looks to 
minimize the mean of Euclidean distances between 
subsequences in two time series G1  and G2.  Unlike the 
LAM, it does not seek to analyze the entirety of the 
overlapping regions at any moment in time. It simply 
looks at the most similar subsequences by minimizing 
the mean of the Euclidean distances between corre-
sponding points on the subsequences/motifs. Note 
that we use Euclidean distances here, but the distance 
metric could be substituted.   

 

 

Fig.  10. Calculating the similarity score between two subsequenc-

es. Subsequences are labeled with i and j indices 

 

Once we find the most similar subsequences, we 
calculate the shift necessary for the best possible 

alignment, based on the first matched indices of the 
subsequences. Because the most similar subsequences 
do not have to include the entirety of overlapping re-
gions between two time series, this algorithm tends to 
be more robust to outliers that could throw off the 
landscape function in the LAM algorithm.   
Given two time series G1 and G2, we find subsequences 
of all lengths from G2, such that the maximum subse-
quence length is at most the length of the shorter of the 
two time series. Within this space of subsequence 
lengths, we find the closest pairs between G2 and G1. 
Let the length of subsequence g2 be l2. We now define 
closeness score 𝑆(     )as follows: 
 

𝑆(     ) =
 

 
 ∑ 𝑑(𝑔    𝑔   )

 
 , 

 
where 𝑑(𝑔    𝑔   ) is the distance between the corre-

sponding points in the subsequence. 
 

 

Fig.  11. In some cases, even the presence of a second feature might 

not be useful. As we see here, even LAM-M failed for this test data 

set. However, the new parameter free algorithm correctly aligned 

both time series. 

 
In Fig.  10, we show an illustration of subsequence 

closeness scoring, for a subsequence of length 3. The 
process involves the summation of distances between 
corresponding points in subsequences being consid-
ered. In order to penalize matches that result from 
short sequences, we divide this sum by the length of 
the subsequence. We acknowledge that this penalty is 
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L = length of subsequence
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a somewhat naïve approach to favor longer subse-
quences. Others have presented intuitive approaches 
in the Minimal Description Length (MDL) space [18]. 
However, empirically our choice of simply taking the 
mean is extremely robust over many datasets. The 
matching pair that minizes the mean of the distances 
between corresponding points forms the basis for cal-
culating the required shift St on G2. 

This parameter free algorithm sometimes outper-
forms LAM, even in the presence of multiple features. 
This is due to the fact that it relies on subsequences, as 
opposed to an entire overlapping region, and as such, 
it is less susceptible to outliers. Of course it is also true 
that there may exist a threshold at which LAM-M 
might do just as well. 

3.4 Multiple Growth Alignment 

Now that we have shown two alternatives to aligning 
two time series, we now show how we use them to 
align multiple time series.  In the algorithm shown in 
Table 1, we assume the parameter free alignment algo-
rithm. However, it can easily be changed to use the 
LAM-M optimization strategy instead.  

This algorithm iteratively aligns the best possible 
pairs of time series, until there is no more time series to 
add to the aligned set. In Table 1.line 19, we make a 
call to our choice of alignment algorithm, in this case 
our parameter free algorithm. Lines 14 to 19 find the 
best match and shift between the current time series, 
and the rest of the time series that have yet to be 
aligned.   
Note that this algorithm does not traverse the list of 
time series L, in order. For simplicity, we set the start-
ing point to be the first time series in our list.  This in-
dex location gets placed on the stack of touched time 
series in Table 1.line 7.  In Table 1.line 15, we check to 
make sure we only compare against untouched time 
series. The time series that is best matched to the cur-
rent source series becomes the source series in the next 
iteration and this is set in Table 1.line 26. In Table 
1.line32 we consider the global context as we shift the 
current matches. The algorithm terminates once the list 
of touched indices is greater or equal to the length of 
input set of time series. 

 

 

Table 1. Main Multiple Alignment Algorithm 

Input:           L : list of time series 

Output:        S: list of required shifts for time series in L. 

1 

2 

3 

4 

5 

6 

7 

Scores = {}  // structure to hold similarity scores 

S = [ ] 

i = 1; 

S(i) = 0; 

C = [ ]; //empty set 

while len(C) < len(L) 

      g = L(i) 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

      C(len(C) + 1) = i;  

       if (~isset(Scoresi.distance)) 

           Scoresi.distance = inf 

           Scoresi.shift = 0 

       bestScore = inf 

       bestInd = i 

       bestShift = 0 

      for j from 1 => len(L) 

           if  j 𝜖 C 

                continue 

           end if 

            h = L(j) 

            [shift  score] = alignSeries(g,h) 

            if(score < bestScore) 

                   bestScore = score 

                   bestShift = shift 

                   bestInd = j 

            end if 

       end for 

       i = bestInd 

       Scoresi.distance =bestScore 

       Scoresi.matchIndex = bestInd 

       ScoresbestInd.distance = Score 

       ScoresbestIndex.matchIndex = i 

       ScoresbestIndex.shift = Scoresi.shift + bestShift 

       S(i) = Scoresi.shift; 

end for 

 

4 RESULTS AND ANALYSIS 

We show alignment results on both synthetic and real 
data.  We generated synthetic data to test the limits of 
the multi-feature landscape alignment (LAM-M). Syn-
thetic data allows us to properly validate the align-
ment algorithm, since we are absolutely certain of the 
ground truth. In addition to aligning time series of pri-

mordial growth, we also show application of our algo-

rithms on a longitudinal data set of individually marked 

guppies (Poecilia reticulata) in the wild. 

4.1 Multiple-Features Landscape Alignment with 

Synthetic Data. 

To generate synthetic data, we start with a single 
known time series, which we call the 'Main' pattern. 
From this pattern, we then generate multiple sub-
patterns of variable lengths by applying spatiotem-
poral random noise to different segments of the 'Main' 
pattern. This allowed us to create noisy samples  that 
were sure to test the limits of our multiple features 
algorithm.  

A plot of the unsynchronized version of the data is 
shown in Fig.  12.  Note that the starting measurements 
of the generated growth curves are almost the same. 
This property can also be observed in the live imaging 
data. This is due in combination of the nature of pri-
mordia growth, as well as human error during imag-
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ing, as well as the plant trying to adjust from the trau-
ma caused by initial exposure to laser light.  The fact 
that the generated data has this property makes it that 
more suitable for testing the multiple feature land-
scape alignment.   

 

Fig.  12. Raw plot of the un-aligned synthetic data. This data has 

similar properties to those observed on real primordia growth 

data. 

 

In Fig.  13., we show the results of aligning the raw 
time series using the LAM algorithm. Here we see that 
one series is seriously misaligned due to noise and out-
lying data points that cannot be overcome by the basic 
landscape function. To overcome this problem, we ap-
plied the LAM-M, to take advantage of the corre-
sponding deformation values from the 'Main' trace and 
the incorrectly aligned curve.  
As expected, the algorithm that incorporated the ef-
fects of multiple features was able to give a perfect 
alignment. Note that such results are only possible be-
cause this example shows the presence of a strong in-
dicative second feature. As we showed before, there 
are cases where even the presence of a second feature 
is not helpful.  

 

Fig.  13. Alignment of synthetic data using original LAM algo-

rithm.  Although LAM does fairly well, it failed to properly align 

one growth curve. We know this because we know the ground 

truth. 

 

 

 

Fig.  14. Perfect alignment with LAM-M, using multiple features. 

(Left) Deformation plot for main trace and wrongly aligned series. 

(Right) Properly aligned set,  due to strong second feature. 

4.2 Results on Live Imaging Data.  

Data used in this project was collected from a live im-
aging experiment that lasted up to 72 hours. Input into 
the system  is a set of surface points for each primordia 
in a single plant over time. We use these surface points 
to compute the time series of surface areas for each 
primordia.  For our experiment, we maintained a time 
interval of 6 hours between data points.  An example 
of a single primordia input at a single time instance is 
shown in Fig.  5.right. Given a stack of images, pri-
mordia contours shown in  Fig.  5.left can be automati-
cally detected using available contour based feature 
detection techniques [24][25].  

 

 

Fig.  15. Sample growth pattern, showing single pri-
mordia growth time series. 
 

At the beginning of each live imaging experiment, de-
veloping primordia are at different developmental 
stages. At some point during the experiment, mature 
primordia that have been growing through out the 
observation period differentiate into other organs and 
exit the meristem. At that point we stop observing 
such primordia. Such exit is always accompanied by 
the emergence of new primordia. This behavior is the 
reason why in most of the results we show here, pri-
mordia will exhibit varying lengths of observation, a 
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situation that begs for robust time alignment. The rest 
of this section will present results of temporal align-
ment of time series of surface areas from a single plant, 
and then from multiple plants put together.  In Fig.  15, 
we show an example of surface area growth pattern for 
one primordia. This figure shows the general pattern 
of primordia growth, which is multi-phasal. It is obvi-
ous from Fig.  15  that the sizes of the reconstructed 
surface area correlates with the calculated surface are-
as. 

The SAM exhibits a great deal of variation within 
and across plants. As such, we tested our alignment 
algorithm on primordia from a single plant, as well as 
primordia from different plants put together. This ex-
periment will test the stability of  both the landscape 
based alignment and the parameter free alignment, 
which we call Minimum Mean of Distances alignment 
(MMD).  
 

 
Fig.  16. Alignment of multiple primordia from a single plant. Raw 

growth curves (top). Alignment with parameter free algorithm 

labeled Minimum Mean of Distances (middle). Landscape based 

alignment (bottom).  Even with a threshold parameter of 2, the 

landscape algorithm failed to find proper shifts. 

 

Multiple Primordia from a Single Plant 

The general nature of primordia growth and data col-
lection introduces many opportunities for noise and 

outlier introduction. As such, the requirement for a 
threshold parameter is sometimes a limiting factor. As 
shown in Fig.  16.bottom, the alignment results from the 
landscape based alignment are no different from the 
original unsynchronized raw time series. This sensitive 
exhibited by the LAM based alignment occurred in 
multiple other plants. We show another example in 
Fig.  17.  
 

 

Fig.  17. Another example of parameter free Minimum Mean of 

Distances alignment being more robust than alignment based on 

landscape matching. 

 
It is worth noting that LAM based alignment 

sometimes does yield reasonable results, especially in 
the presence of deformation. In Fig.  18, we show an 
example where both algorithms presented achieved 
reasonable alignments.  Note that these results were 
obtained after computing the corresponding defor-
mation of the primordia in question and applying the 
multiple feature version of LAM. 

  
 



12 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,  MANUSCRIPT ID 

 
 
 

 

 

Fig.  18. Both algorithms yielding similar alignment 
results. 
 

All these examples suggest that in the absence of a 
very strong second feature, our parameter free Mini-
mum Mean of Distances  (MMD) alignment algorithm 
is generally superior to the landscape based alignment. 
It is true that without a reasonable minimum subse-
quence length, MMD alignment could also fail, be-
cause it might elect very short sequences that give the 
minimum score, yet in the context of surrounding 
points, does not make for a good match. In this situa-
tion and in the presence of a strong second feature, the 
LAM-M multiple feature alignment will be the pre-
ferred option.   
 

Alignment of Multiple primordia from multiple plants 

In order to test the robustness of our algorithm, we 
show performance of our alignment algorithm when 
we mix primordia from different plants.  For this ex-
periment, we aligned a total of 24 primordia, using 
both algorithms presented Fig.  19. Even with expected 
variation across plants, we show that a robust align-
ment routine can achieve an acceptable alignment.  
These results are very significant, especially in the 
study of the principles that govern meristem 
growth/maintenance. As mentioned earlier, live imag-

ing limits the number of markers we can use at any 
given instance. As such it requires many plants to 
study a few genes. Proper alignment is the only way 
we can begin any accross plants analysis.  Based on 
these results, LAM based alignment schemes seem to 
be very sensitive to growth type data like the multi-
phasal growth exhibited by primordia. LAM will work 
well for datasets like respiration data, since the pat-
terns sort of periodic and variability between subjects 
is not as high as we see in meristem development. In 
such case it might be better to look at entire land-
scapes, rather than merely subsequences, even though 
one could argue that the space of overlapping land-
scapes is a subset of all possible subsequences.   

 

Fig.  19. Alignment of primordia collected from  5 plants. Total 

number aligned is equal to 24. 

 

4.3 Results on Guppy evolutionary data. 

The guppy data comes from a long-term project on 
rapid life-history evolution for which guppies were 
introduced in four isolated sections of streams in The 
Northern Range of the island of Trinidad. All guppies 
are marked with a unique combination of visible im-
plant elastomer and are thus individually identifiable. 
The stream sections are censored monthly, when all 
individuals are caught, identified, and measured 
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(standard length and weight), and new recruits are 
given a new unique mark. Only individuals above 
14mm of standard length are marked. Because birth is 
not observed, the age of individuals is unknown. A 
robust temporal alignment algorithm is therefore re-
quired for proper analysis. Data for this experiment 
was extracted from the time lapse average length 
measurements taken over a period of fifteen months. 
To show applicability, we randomly selected individu-
als, but made sure they were from the same cohorts or 
from cohorts that were not introduced into the ecosys-
tem more than two months apart.   

As we show in Fig.  20, the parameter free algo-
rithm based on Minimum Mean of Distances achieved 
a very desirable alignment. Independent domain ex-
pert biologists who granted us the right to test on their 
data actually confirmed our alignment results as rea-
sonable.  

 

Fig.  20. Alignment of growth in length, of Trinidadian guppy. 

Each plot represents a single individual's growth pattern over 

time. The Y axis is the normalized lengths, while the x-axis repre-

sents time. 

 

These results on guppy evolutionary data are signifi-
cant, and present a new opportunity for biologist try-
ing to study the effects of ecosystem conditions on 
adaptive evolution.  Biologists now explore the possi-

bility of estimating the age of individuals,  or properly 
comparing individuals,  in a way that is invariant to 
seasonal variation.   
Given the variation in the data, it is no surprise that 
the parameter free MMD algorithm resulted in a more 
natural alignment. This is again another case where 
significant variation and noise poses a constraint on 
LAM based alignment.  

5 CONCLUSION 

We have proposed a framework for measurement of 
growth features and alignment of unsynchronized 
primordia growth data from live imaging experiments.  
To move closer to the big picture goal of developing a 
dynamic gene expression atlas, a necessary first step is 
the development of robust temporal growth alignment 
algorithms. We presented an extension to an already 
reliable alignment algorithm (LAM), as well as pre-
sented a parameter free alternative to growth align-
ment. The extension to the LAM algorithm to allow for 
multiple feature optimizations allowed us to overcome 
unique challenges presented in data with increased 
noise. However, this extension is sensitive to outliers 
and high variation. We have shown cases where LAM-
M outperforms LAM basic, and also cases where even 
LAM-M fails, yet our parameter free algorithm suc-
ceeds.  To demonstrate the diversity of our algorithm, 
we also showed results on guppy evolutionary growth 
data. This tells us that in the presence of high variation 
and increased noise, our parameter free MMD align-
ment algorithm is superior to LAM based alignment 
algorithms. A robust alignment of time lapse data 
gives developmental biologist the ability to begin to 
deduce the causal relationship between gene expres-
sion, cell behaviors and organ growth. Such an analy-
sis would not be reliable without an alignment frame-
work such as the one we proposed. 
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