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Optimal Landmark Selection for Registration
of 4D Confocal Image Stacks in Arabidopsis

Katya Mkrtchyan, Anirban Chakraborty, and Amit Roy-Chowdhury

Abstract

Technologically advanced imaging techniques have allowed us to generate and study the

internal part of a tissue over time by capturing serial optical images that contain spatio-temporal

slices of hundreds of tightly packed cells. Image registration of such live-imaging datasets of

developing multicelluar tissues is one of the essential components of all image analysis pipelines.

In this paper, we present a fully automated 4D(X-Y-Z-T) registration method of live imaging stacks

that takes care of both temporal and spatial misalignments. We present a novel landmark selection

methodology where the shape features of individual cells are not of high quality and highly

distinguishable. The proposed registration method finds the best image slice correspondence

from consecutive image stacks to account for vertical growth in the tissue and the discrepancy in

the choice of the starting focal point. Then it uses local graph-based approach to automatically

find corresponding landmark pairs, and finally the registration parameters are used to register

the entire image stack. The proposed registration algorithm combined with an existing tracking

method is tested on multiple image stacks of tightly packed cells of Arabidopsis shoot apical

meristem and the results show that it significantly improves the accuracy of cell lineages and

division statistics.
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meristem.

F

• K. Mkrtchyan is with the Department of Computer Science and Engineering, University of California, Riverside, Riverside,
CA, 92521.

• A. Chakraborty and A. Roy-Chowdhury are with the Department of Electrical and Computer Engineering, University of
California, Riverside, Riverside, CA, 92521. E-mail: amitrc@ee.ucr.edu



2

1 INTRODUCTION

P ROPER understanding of the causal relationship between cell growth patterns and

gene expression dynamics is one of the major topics of interest in developmental

biology. Information, such as rates and patterns of cell expansion and division, play a

critical role in explaining cell growth and deformation dynamics. The need for quan-

tification of these biological parameters and observing their evolution in time is very

important. To achieve this goal, advanced microscopy techniques are used to collect

time lapse videos and quantify the behavior of hundreds of cells in a tissue over multiple

days. One of these techniques is the Confocal Laser Scanning Microscopy (CLSM) based

Live Cell Imaging. This technique allows us to take optical cross sections of the cells in

the tissue over multiple observational time points to generate spatio-temporal 4D (X-Y-

Z-T) image stacks. To analyze the details of the collected image data, it is necessary to

develop a fully automated image processing and analysis framework which gives rise

to many new automated visual analysis challenges.

The image processing and analysis framework for gathering the cell growth and

division statistics comprises of three main parts - image registration, cell segmentation

and cell tracking. Without proper registration the subsequent parts in the image anal-

ysis system would fail. The misalignments present in the live imaging stacks are both

temporal and spatial. The spatial shifts between images from different temporal stacks

are caused from the involvement of manual work in noncontinuous imaging procedure

(physically moving the specimen from one place to another). Note that because of

the robustness of microscopy techniques the images in one spatial (X-Y-Z) stack are

almost registered. But because of continuous growth of the living organism during

the imaging procedure there is also a slice matching issue in consecutive stacks to be

solved. The presence of the slice mismatch between image stacks and significant shifts

between images prevent getting accurate cell tracking and cell division detection, which

causes collection of non accurate statistics. That is why the issue of registration is very

important.
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As an example let us consider this scenario; 3D confocal laser scanning microscopy

is used to capture 4D (depth/time) image stacks of ’Shoot Apical Meristem’ (SAM)

of the plant Arabidopsis. The SAM of Arabidopsis Thaliana consists of approximately

500 cells and they are organized into multiple cell layers that are clonally distinct from

one another and are tightly packed with each other. At each imaging time there is

no control over which depth of the meristem the imaging starts. Also at each imag-

ing/observational time point the plant is moved and placed under microscope to acquire

the images. Because of this replacement of the plant under the microscope and the lack

of control on the imaging depth the 4D dataset contains unregistered image stacks.

Figure 1 demonstrates three consecutive stacks imaged at three different depths where

the the same depth slices do not correspond. The figure also demonstrates images with

noticeable shifts between images from different time instances. Automated analysis of

cell lineages, cell growth dynamics requires the 4D image stacks to be registered. We

will show experimental results on this particular application setting.

1.1 Contribution

In this work we present a fully automated spatio-temporal registration framework for

registering live imaging stacks. This framework is suitable across tissues which show

the characteristic of having tightly packed cells.

We have provided an optimization based framework to select the best image slice

correspondence from consecutive image stacks by using the tissue characteristics in

images. Also we have presented a novel landmark selection methodology where the

shape features of individual cells are not of high quality and often non-discriminative.

We solved the problem by choosing the relative positions and ordered orientation of the

neighboring cells as unique features. We represented the local neighborhood structures

of cells as graphs and selected those landmark points that have the minimum distance

between the local graphs built around them.
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A preliminary version of this work was presented in [10] where we assumed that

the slice correspondences between Z-stacks were given. In [10] the input comprised of

any two confocal image slices from two Z-stacks. The method proposed in this paper

is a truly automated 4D registration method as the input to this method is a complete

time lapse confocal image stack. Finding the corresponding slices needed to register

is a big step in order to scale the problem and it is a fundamental problem that we

are addressing in this work. Also we are looking at how the choice of the stack is

reflected in the registration problem. Our analysis, presented in (Figure 6), shows the

fundamental effect of a proper slice selection on the registration and subsequent image

analysis results. We have shown the effect of using optimal image slice correspondences

in the registration module and the improvements in results are evident in Figure 6. As

explained in the Section 3, there is a significant increase in number of tracked cells and

lengths of cell lineages, which validates the use of the slice correspondence method in

the registration framework.

Also, we have improved the theoretical side of the landmark selection method over

[10] by forcing a constraint into the optimization. It was done to insure feasibility on the

selected set of landmark point pairs. The reason behind this change is that the rotation is

governed by the rotation of the tissue, the cell independently cannot rotate by different

amounts.

To show the significance of the registration and to show that our proposed regis-

tration method provides good results we considered the CLSM image stacks of tightly

packed cells of a live Arabidopsis shoot meristem (SAM) (the spatio-temporal misalig-

ments present in the sample CLSM image stack of a Arabidopsis shoot meristem are

shown in Figure 1). We combined our proposed registration method with local-graph

matching based robust cell tracking algorithm [2] and show significant improvement in

accuracy of cell lineages and division statistics.
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Fig. 1. Three consecutive Z-stacks with three consecutive slices shown. The black arrows between images show the
slice correspondence between Z-stacks. The same color circles show the same collection of cells through the spatio-
temporal slices.

1.2 Relation to Existing Work

Amongst the different components of the general image analysis pipeline there has been

some work done on image segmentation and cell tracking in live imaging stacks. For cell

segmentation, both the Watershed [5] and the Level-set method [4] have been shown to

provide good results. In general, any segmentation method, e.g. [20], [21], can be used

as a preprocessing step. Many tracking methods have been proposed that attempt to

find correspondences between 2D segmented cells. For example, [2] exploits the local

geometric structures around a cell to find correspondences between cells. [9] integrates

the segmentation and tracking modules to reach an optimized segmentation and track-

ing result. In [8] multiangle image acquisition, three-dimensional reconstruction and cell

segmentation lineage tracking approach is developed in which SAM is imaged from
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multiple angles. But all of these methods rely on the availability of registered image

stacks of the tissue.

In many works e.g. [2], [9], [13], [14], [15], [16], the images are registered with

maximization of the mutual information method [1]. But this method may not be always

effective. For example, we have looked at the confocal imagery of the Arabidopsis SAM

for experiments in this paper. The mutual information based tracker fails to perform

satisfactorily as it uses the pixel intensities to acquire the registration. Pixel intensities in

the Arabidopsis SAM images are not discriminative features. The landmark-based reg-

istration is more suitable for noisy and Z-sparse confocal images than registration based

on maximization of the mutual information, which we demonstrate in the experimental

results section.

A recent paper [8] uses SAM images acquired from multiple angles to automate

tracking and modeling. In this work, for pair of images to be registered, the user

identified correspondences by pairing a few anchor points (referred as landmark points

in this work). In this work, we present a fully automated method to find the correspond-

ing temporal slices from Z-stacks of images and a fully automated landmark-based

registration method that can find out correspondences between two images and utilize

these correspondences to yield a better registration result. This method is suitable across

tissues which show the characteristic of having tightly packed cells.

A commonly used landmark-based registration algorithm is the Iterative Closest

Point algorithm [6], which is very sensitive to initialization. There are number of subse-

quent variations of this algorithm, e.g. Iterative Closest Point using Invariant Features

[7], which uses features like eccentricity and curvature to overcome the issue. There

are other registration works [17], [18] that acquire the registration using features like

intensity, surfaces, and SIFT. But in tissues (e.g. Arabidopsis SAM) that are comprised of

tightly packed cells with stereotypical shapes and sizes, eccentricity and other common

features are not discriminative enough to be used for the selection of landmarks for
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registration. This is why we need to develop a novel feature to register this type of

images. The novel landmark estimation method presented in this paper exploits the

tight spatial topology of the tissues under study and proposes a feature descriptor based

on the local neighborhood structure around a cell for a robust registration method.

1.3 Organization

The rest of the paper is organized as follows. The algorithmic details of the proposed

framework; finding the best image slices correspondence, feature matching in the se-

lected images and entire Z-stack registration are provided in Section 2. We have shown

experimental results and validation of our approach in Section 3 followed by concluding

discussion in Section 4.

2 DETAILED REGISTRATION FRAMEWORK

The spatio-temporal registration of live imaging stacks comprises of three major steps:

finding corresponding image slices from two consecutive image stacks, feature matching

in the selected corresponding images, and aligning two stacks of images.

The next three sections present details of each step of the registration.

2.1 Finding Corresponding Temporal Slices

In most cases, for any two Z-stacks imaged at consecutive time intervals, the same depth

image slices will not correspond. We consider all slice pairings between two consecutive

Z-stacks and define distance on each pair correspondence. The distances are computed

based on the tissue characteristics in images. Specifically the number of cells and the

area of the tissue in the image are used to compute the distance.

Let us consider two consecutive Z-stacks I(t) and I(t+1) taken at time t and t+ 1. The

image i corresponds to the confocal slice image taken at time t and at the depth hi µm

and image j, corresponds to the confocal slice image taken at time t+ 1 and at the depth
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hj µm. Let n(t)
i and n

(t+1)
j be the number of cells and let a(t)

i and a
(t+1)
j be the area of the

tissue in images i and j, taken at time t and t+ 1 respectively. We define the distance for

the image pair (i, j) to be the best pair candidate as d(i, j) the following way:

d(i, j) =
|n(t)

i − n
(t+1)
j |

n
(t)
i + n

(t+1)
j

+
|a(t)

i − a
(t+1)
j |

a
(t)
i + a

(t+1)
j

(1)

The constructed distance matrix d will contain distance values for all possible pairs

between the two Z-stacks. We can see from the way the distances are computed that the

smaller the distance corresponding to the image pair is the better image slice candidate

the pair is. So the final slice correspondence between consecutive Z-stacks I(t)
i and I

(t+1)
j

is defined as:

(i, j) = arg min
i∈I(t),j∈I(t+1)

d(i, j) (2)

Essentially, the above described problem of finding corresponding slices is analogous

to the shortest path problem [11], which is to find a path between two vertices (nodes) in

a graph such that the sum of the weights of its constituent edges is minimized, where in

our case every slice becomes a node. So the problem of finding corresponding temporal

slices from the Z-stacks can be posed as a shortest path algorithm and can be solved

using Dijkstra’s algorithm [12], where the shortest path is only in temporal direction.

2.2 Feature Matching in Selected Images

Assuming that the best image slices between two Z-stacks are chosen, we want to find

the features that can be used to find corresponding landmark point pairs to register one

image stack onto the other.

When using landmark-based registration method, the quality of the image regis-

tration result depends on the accuracy of the choice of the landmark points. Finding

corresponding landmark point pairs from two images depends on the feature selection.

Motivated by the idea presented in [2], we use the relative positions and ordered

orientation of the neighboring cells as unique features. To exploit these properties we
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Fig. 2. Local graphs and two enlarged triangle subgraphs with indicated features.

represent these local neighborhood structures as graphs and select the best candidate

landmark points that have the minimum distance between the local graphs built around

them.

2.2.1 Local Graphs as features

Graphical abstraction is created on the collection of cells. Vertices in the graph are the

centers of the cells and neighboring vertices are connected by an edge. Neighborhood set

N(C) of a cell C contains the set of cells that share a boundary with C. Thus every graph

consists of a cell C and a set of clockwise ordered neighboring cells (Figure 2 (A,D)).

The ordering of the cells in N(C) is important because under non-reflective similarity

transformation, the absolute positions of the neighboring cells could change but the

cyclic order of the cells remains invariant.

2.2.2 Landmark point pair estimation from local graphs

Cell divisions happen throughout the entire imaging period but at the consecutive

images only a few cell divisions are present. Ideally, in the areas where there is no
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cell division, the local graph topology should not change (segmentation errors will

circumvent this in practice). We exploit these conditions to find the corresponding

landmark pairs in two images. LetG(t)
1 andG(t+1)

2 be two local graphs constructed around

the cells C and C ′ in consecutive temporal slices (Figure 2). For each subgraph of the

local graph G(t), we define feature vector the following way;

FC(t) = [f1f2f3f4f5]T ,where

f1 = θNi1 ,C,Ni2
(t),

f2 = lC,Ni1
(t), f3 = lC,Ni2

(t),

f4 = ANi1
(t), f5 = ANi2

(t)

We define the distance between two triangle subgraphs as

DTS

(
FC
i (t)), (FC′

j (t+ 1))
)

=
5∑

k=1

(
fk−f ′k
fk

)2

,

where fk ∈ FC
i (t), f ′k ∈ FC′

j (t+ 1).

(3)

To ensure that our landmark estimation method takes care of the rotation of the

local area, we consider all cyclic permutations of the clockwise ordered neighbor set

{N ′1, N ′2, . . . , N ′m} of the cell C ′ from the input image. The cyclic permutations of the

set {x1, x2, . . . , xm} can be written in terms of the shift k (k = 0, 1, . . . , (m − 1)) as the

set {x(1+k−1)mod(m)+1, x(2+k−1)mod(m)+1, . . . , x(m+k−1)mod(m)+1}. As an example, if (1, 2, 3) is the

given sequence, then possible values of the shift k = 0, 1, 2 and all the cyclic permutations

of the sequence (1, 2, 3) will be (1, 2, 3), (2, 3, 1), (3, 1, 2) for k = 0, 1, 2. We consider all

cyclic permutations of the clockwise ordered neighbor set {N ′1, N ′2, . . . , N ′m} of the cell C ′

from the input image and define the distance D(G1, G
k
2) between two local graphs G1

and G2 based on the chosen permutation corresponding to shift k as

D(G1, G
k
2) =

∑
{i,j}

DTS

(
FC
i (t)), (FC′

j (t+ 1))
)

∀i ∈ {1, 2, . . . ,m}, j = [(i+ k − 1)mod(m) + 1]

(4)

for k ∈ {0, 1, 2, . . . , (m − 1)}. We compute the sum of the distances between each of the
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ordered pairs of triangle-subgraphs for each permutation k.

It is important to notice that in the calculation of the distance d(i, j) (Eqn. 1), which is

used to find corresponding temporal slices, feature vector F , which is part of landmark

point pair estimation, is not used. The reason is that the image stack slices are very

stereotypical; there can be different local graph patters which can be similar in shape but

be from different slices. In confocal imaging a cell is imaged in multiple Z slices along

time. This may result in having all cells in a cluster of tightly packed cells being imaged

at slices z, z + 1, z + 2 and at time points t and t+ 1. If we want to use this micro feature

F to choose the corresponding temporal slices, essentially there is a discrimination why

slice z at time point t should match with slice z at time point t + 1. Because there is no

difference in the cell cluster, it is equally possible that slice z at time point t can also

match with slice z+ 1 at time point t+ 1. This feature vector F is kind of invariant across

Z, it discriminates cells spatially in one slice along time but it is not a discriminative

enough feature to understand which slice should match to which slice as the same local

graph (cell cluster) may be preserved along different depths. So these components of the

feature vector F are micro level features and they do not capture the slice information.

That is the reason why F does not capture the effect of the depth at which the cells are

imaged and is not used to find the corresponding temporal slices.

The minimum distance D?(G1, G2) between two graphs G1 and G2 corresponding to

cells (C,C ′) for all permutations k is

D?(G1, G2) = minD(G1, G
k
2) (5)

where k ∈ {0, 1, . . . , (m − 1)}. This guarantees that our landmark estimation method is

invariant of the rotation in the local area.

For all cell pairs Ci, C
′
j and corresponding graphs Gi, Gj from two consecutive im-

ages, we compute the distance D?(Gi, Gj). Now, our objective is to obtain the set of best

q cell pairs for which the local graphs around these cell pairs are maximally similar.
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However, for each of these chosen cell pairs, the optimal shift (corresponding to the

minimum distances between the graphs) must result in approximately similar angles of

rotation. This uniformity between the rotation of the individual graphs is obvious as

all the cells are tightly packed and the rotations of individual cell clusters (the ‘local

graphs’) are uniformly affected by the global rotation of the entire tissue. Thus, as a

corollary, if any set of q cell pairs show large variations in the optimum angle of rotation,

the set must contain one or more incorrectly associated local graph pairs.

2.2.3 Measurement of Angle of Rotation Between Pairs of Graphs

Between two graphs G1 and G2, the circular shift k∗ corresponding to the minimum

distance D∗(G1, G2) is given as,

k∗ = arg min
k

D(G1, G
k
2) (6)

Assuming that the rotated graph Gk∗
2 is a candidate match for the graph G1, the angle of

rotation Θ∗(G1, G2) = Θ(G1, G
k∗
2 ) could be computed as follows.

Let in graph G1, the central cell is C and the set of neighboring cell slices around C

being {N1, N2, · · ·Nm}. Likewise, the central cell in the graph G2 is C ′ and the neighbors

around it are {N ′1, N
′
2, · · ·N

′
m}. Now, if Gk∗

2 is the transformed version of G1, then the

amount of rotation would be obtained as,

Θ(G1, G
k∗

2 ) =
1

2π

(
θN ′

k∗+1
,C′ ,Y ′ − θN1,C,Y

)
(7)

The angles θN1,C,Y and θN ′
k∗+1

,C′ ,Y ′ are described through Figure 3. The angle Θ(G1, G
k∗
2 )

represents the amount of counterclockwise rotation that G2 must undergo with respect

to C ′ to align N
′
k∗+1C

′ with N1C in G1.
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G1

Fig. 3. Measuring the angle of rotation of a local graph. (A) A cell cluster at any given time instant t, centered around
the cell C. The neighboring cells N1, · · ·N6, along with the central cell C constitutes the nodes of the local graph G1.
(B) The same cell cluster at time t+ 1. The graph G2 is a rotated version of G1. The optimum shift(k∗) is estimated as
2 and hence N1C is rotated clockwise to N ′

3C
′ in G2. Therefore, the relative normalized angle of rotation between G1

and G2 can be computed as Θ∗(G1, G2) = 1
2π

(
θ
N

′
3,C

′
,Y

′ − θN1,C,Y

)
.

2.2.4 Optimum Set of Landmarks: Simultaneously Minimizing Dissimilarities And Vari-

ance In Angles of Rotation Between The Local Graphs

The final objective is to obtain a set of q cell pairs from the two image slices such

that the individual pairs of local graphs around those slices are maximally similar as

well as the variation in the angles of rotation in this set is least. This set, denoted as

s∗q = {(Gi1 , G
k∗1
j1

), (Gi2 , G
k∗2
j2

), · · · (Giq , G
k∗q
jq

)}, is the set of landmark pairs required for

registration of the image pairs, where the individual landmarks are the centroids of the

2D cell slices.

Let the superset of all such possible q-pairs be {s1
q, s

2
q, · · · sVq }, and let it be denoted by

S. For any candidate set for landmarks slq ⊂ S ∀l = 1, 2, · · ·V , the average normalized

dissimilarity between all pairs of local graphs in this set would be,

D
∗
l =

1

q

∑
(G1,G2)∈slq

D∗(G1, G2)

Dl
max

(8)
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where, Dl
max = maxD∗(G1, G2) ∀ (G1, G2) ∈ slq. The normalization is done to scale the

average value between 0 and 1.

The variance in the angles of rotation over the set slq is computed as,

(9)

σ2
Θ,l =

1

q

∑
(G1,G2)∈slq

Θ∗(G1, G2)2 −

1

q

∑
(G1,G2)∈slq

Θ∗(G1, G2)

2

The overall cost function is defined as a weighted sum of D
∗
l and σ2

Θ,l and the best

set of q landmark pairs is estimated by minimizing this cost function.

s∗q = arg min
slq∈S

{
w D

∗
l + (1− w) σ2

Θ,l

}
(10)

The weight w can be user-defined. Since the feature distance is the main parameter

in finding the landmark point pairs, we varied the value of w between 0.5 and 1. The

registration results were not changed. For all our experiments, the w is fixed at 0.5. The

choice of q is described later in the Section 2.3.

Once we have the landmark point pairs, the positions of the landmark pairs in the

two images are used to estimate the parameters of the transformation model (affine, non-

reflective similarity etc.).Then the estimated transformation function maps the rest of the

points in the input image to the reference image. The Section 2.3 presents details on

computing the spatial transformation between the images and final image registration.

2.3 Image Registration

After the corresponding image slices across two stacks of images taken at two consecu-

tive time points are selected and the corresponding landmark point pairs in the selected

images are acquired, we find the spatial transformation between these images. Then we

use the estimated transformation to register the entire Z-stacks.
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2.3.1 Finding the spatial transformation between two images

Once we have the landmark point pairs corresponding to the input (the image that

we wish to transform) and reference (the image against which we want to register

the input) images, we find the spatial transformation between them. Transformations

present in the live image stack of a multilayer, multicellular structure where the cells

are tightly packed together, include a rotation and a translation. The non-reflective

similarity transformation is chosen as a type of transformation to proceed with. Finding

the nonreflective similarity transformation between two images is a problem of solving

a set of two linear equations. For better accuracy of transformation parameters the top q

landmark point pairs are used in a least square parameter estimation framework. But, as

known, greater the number of landmark point pairs is, better the estimated solution of

the Least Square technique is. In order to choose the best landmark point pairs we rank

them according to the similarity of local graphs created on the neighboring cell structure.

Choosing more landmark points will mean finding transformation between two images

based on points that have less possibility to be correct corresponding points, which will

eventually lead to bad registration. So there is a trade-off between these aspects. In our

experiments we choose four, five or six landmark point pairs depending on the CLSM

dataset image quality.

2.3.2 Z-stack Registration

Depending on the procedure the living tissue imaging is done, the transformations

between corresponding image slices from consecutive image stacks are the same. So

the transformation parameters corresponding to the selected image slices from these Z-

stacks will also be the transformation parameters between the rest of the image pairs

in these two Z-stacks. So, by applying the computed transformation parameters for the

selected image slices on the rest of the image pairs from the two Z-stacks, the entire

Z-stack taken at time point t+ 1 will be registered to the Z-stack taken at time point t.
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3 EXPERIMENTAL RESULTS

3.1 Imaging Setup

For the experiments performed in the present study, the 3D structure of the tissues are

imaged using single-photon confocal laser scanning microscope and we have specially

dealt with the ’Shoot Apical Meristem’ (SAM) of the plant Arabidopsis. The SAM of

Arabidopsis Thaliana consists of approximately 500 cells and they are organized into

multiple cell layers that are clonally distinct from one another and are tightly packed

with each other. By changing the depth of the focal plane, CLSM can provide infocus

images from various depths of the specimen. To visualize cell boundaries of all the cells

in the SAM, plasma membrane-localized Yellow Fluorescent Protein (YFP) is used. The

set of images, thus obtained at each time point, constitute a 3-D stack, also known as

the ’Z-stack’. Each Z-stack is imaged at a certain time interval (e.g. 3 or 6 hours between

successive observations) and it is comprised of a series of optical cross sections of SAMs

that are separated by approx. 1.5 µm, and a standard shoot apical meristematic cell has

a diameter of about 5 - 6 µm.

At each imaging time there is no control over in which depth of the meristem the

imaging starts, so in each Z-stack the first slice imaged is at random depth and the rest

of the images in the stack are 1.5µm deep from each other. This means that for any two

Z-stacks imaged at consecutive time intervals, in most cases, the same depth slices of

the specimen won’t correspond, there will be a shift in the slice correspondence. Figure

1 demonstrates three consecutive stacks imaged at three different depths where the the

same depth slices do not correspond.

In practice, the live cell imaging of Arabidopsis SAM comprises of several steps,

where the plant has to be physically moved between different places. For normal growth

of the plant, it has to be kept in a place having specific physical conditions (such

as a temperature of 24oC). The plant is moved and placed under microscope at the

imaging/observational time points, before it is placed back to the aforementioned place
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once again. For 72 hours overall, this process is repeated every 3 hours. Because of

this process of replacement of the plant under the microscope and also since the plant

keeps growing during these 72 hours, various shifts can occur between two Z-stacks of

images taken in consecutive time points, though images in any Z-stack are automatically

registered. Figure 1 demonstrates images from a data set with noticeable shifts between

images from different time instances.

3.2 Experimental Results and Analysis

We further evaluate the performance of the proposed automatic spatio-temporal regis-

tration and show numerical results. As the numerical results as direct comparison of

registration results are not trivial we evaluate the tracking accuracy after and before

registration and show the performance improvement.

We have tested our proposed automatic spatio-temporal registration of live imaging

stacks method on different datasets that consist of 4D image stacks taken at six hour

intervals for 72 hours overall. First for each two consecutive Z-stacks of every dataset, we

run our method to find the corresponding image slices. Then using the image correspon-

dence information from corresponding Z-stacks we chose a temporal stack and applied

the watershed segmentation [5] and local graph matching based tracking [2] methods

and compared the obtained results. We compared tracking results of the proposed

method with results obtained without registration, with semi-automated registration

(the landmark pairs are chosen manually, the transformation is obtained automatically)

and with Matlab registration module which is based on the maximization of the mutual

information.

Pairwise Tracking - Figure 4 (A-E) shows cell tracking results from two consecutive

images (30th and 36th hour), obtained with different approaches. We can see that for

the chosen two consecutive images (30th and 36th hour) the results with maximization

of the mutual information based registration and without registration show incorrect



18

Fig. 4. A) Raw consecutive images (the same color arrows represent the same cells). Tracking results obtained B)
without registration C) with registration based on maximization of the mutual information, D) with semi-automated
registration (the landmark pairs are chosen manually, the transformation is obtained automatically), E) with proposed
automatic registration. The same colors represent the same cell.

Fig. 5. Number of tracked cells across two consecutive images.

cell tracks. Whereas the proposed method and semi-automated registration correctly

registered two images with 100% correct tracking results. Detailed results for the same

dataset are shown in Figure 5. We can see that from 33 and 27 cells, present in the images

at time points 5 (30th hour) to 6 (36th hour) respectively, none are tracked by the tracker

run on the images registered with the registration based on the maximization of the

mutual information and not registered images (as in Figure 4 (A-E)). The same result

is seen for the tracking results in images at time points 6 to 7. But the tracking results

obtained with proposed and semi-automated methods provided very close to manual
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Fig. 6. Tracking results on a temporal image stack where the images are chosen from the Z-stacks based on the
proposed slice correspondence and where the same slice is chosen from all Z-stacks - A) Number of tracked cells
across two consecutive images, B) Length of cell lineages.

results.

Image Slice Correspondence Figure 6 shows two different tracking result compar-

isons on a temporal stack between the case where the temporal stack is constructed from

the proposed automated image slice correspondence module and the case where from

each Z-stack the same slice image is chosen. Figure 6 A) shows the number of tracked

cells across each two consecutive images in the temporal stack and Figure 6 B) shows the

lengths of cell lineages (for how many consecutive frames the same cell was tracked).

All of these results are manually verified. We can see significant increase in number of

tracked cells and lengths of cell lineages in the case where the dataset is constructed

from our proposed image slice correspondence module which validates the use of the

slice correspondence module in the registration framework.

Pairwise Registration - The result of the registration depends on the clearness of the

images. Although, in the proposed method, we need very few landmark points we can-

not control the regions of the images in which the landmark points may appear, so in the

process of the selection of the landmark points we might take false positive landmarks

which will result in pure registration. Figure 7 shows three pairwise registration results

with images from three different depths, with different SNRs. As we can see the column

A) in the figure shows three different images taken at hour 18 with different SNRs sorted

from image with high to low SNR accordingly. Images in the column B) are registered
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Fig. 7. Registration results on three pairwise images from three different depths and with different SNRs. Column A),
B) show the raw images from the hour 18 and 24 correspondingly, column C) shows the image in the column B) after
registration, and column D) and E) show the fused images before registration and after registration (white arrows show
the same cells)

to the images in the column A) accordingly and column C) shows the same image after

registration. As the white arrows in the figure show we have registration with high

tracking error in the images from the first row (high SNR), registration with medium

tracking error in the images from the second row (midium SNR), and registration with

low tracking error in the images from the third row (low SNR). These results can also be

clearly seen in the columns D) and E) which show the fused images before registration

and after registration. This shows the robustness of our algorithm.

Lineage Analysis - Figure 8 shows lengths of the cell lineages calculated with the

proposed method, semi-automated registration, registration based on maximization of

the mutual information and without registration. These results contain numbers from

two different datasets; three hour dataset(G) and six hour dataset, where six or three

indicate the interval between two successive imaging of Z-stacks. Longer the lineages
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Fig. 8. Length of cell lineages for different datasets A-H. Each bar in each graph represents how many cells (number
of cells) have that lineage length. I) Average length of cell lineages across all eight datasets.

are, better the results are. We can see that in tracking without registration and after

registration with maximization of the mutual information, there are no cells that have

lineage lengths greater then four (Figure 8 (A)), greater then eight (Figure 8 (C)) etc., as

opposed to the case with the proposed and semi-automated registration, where cells

have lineages for the entire 72 hours. The reason for such results is that there is a

big shift between two images from consecutive time points in the middle time points.

Without proper registration the tracking algorithm is not able to provide correct cell

correspondence results, which interrupts the lineage of the cells. Figure 8 (I) shows the

length of lineage length averaged across all eight datasets. We can see that on average

we find more cells with longer lineages with our method and the semi-automated

method compared to the results with registration with mutual information and without

registration, where those long lineages are found in shorter peaces. Figure 8 (A) result

can be also related to Figure 5 since they are representing statistics from the same dataset.
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Since no cells have been tracked in frames five to six and overall there are eleven frames,

then no cell can have a lineage life with the length greater than or equal to five.

Table 1 shows the number of cell divisions in 72 hours. We can see that the semi-

automated and the proposed registration provide results that are close to the manual

results as opposed to without registration and registration based on maximization of the

mutual information.

TABLE 1
Total Number of Cell Divisions/Ground Truth

Data OurMethod Semi-Auto. MutualInfo. NoRegistration
1 28/34 30/34 23/34 25/34
2 17/21 17/21 11/21 12/21
3 15/15 15/15 9/15 9.5/15
4 11.5/16 12.5/16 9.5/16 10/16
5 21/23 23/23 17/23 19/23
6 12.5/16 13.5/16 9/16 9.5/16

3.3 Discussion on the Limitations of the Proposed Method

The accuracy of the proposed image registration method depends on quality of the

images and on the consistency of the cell neighborhood structure. As we have shown in

our experiments, the proposed registration method can handle moderate deformations

of the growing cells. However, if the deformation changes the topology of cells local

neighborhood, it becomes more challenging and in some cases leads to failure of the

registration module.

The image registration is acquired after the cell segmentation module, so the registra-

tion results rely on the cell segmentation results. In general in confocal microscopy based

live cell imaging there could be situations where a part of the image is noisier than the

other parts, especially the central regions, and hence the segmentation results sometimes

are not as good as in the deeper layers. But in the proposed method we try to overcome

this situation by providing landmark based registration, where it is not the entire image
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that is used to do the registration. We essentially find the best points from multiple

images which could be used as landmark pairs. Often these corresponding points come

from the better segmented regions (clearer sections of images) and it is highly unlikely

that we find a very good match in the blurred section. So the proposed method is robust

to noise in part of the image and segmentation errors to a certain extent; however for a

very noisy image where the segmentation is not satisfactory over the whole image the

registration method is quit affected by such cases.

As shown in Figure 7, for well segmented or clearer images (Fig. 7 row 1) we have a

very good registration, for not so well segmented or not so clean images (Fig. 7 row 2)

we also have good registration, but where the noisy region is almost everywhere (Fig. 7

row 3) (there are more chances of finding bad landmark pairs because the nosy region is

larger), we can see that the registration results are not as good as the previous cases.

Future work can consider other registration approaches to improve the results, in-

cluding non-linear registration methods.

4 CONCLUSION

Automated image analysis such as registration, segmentation and tracking of cells in

actively developing tissues can provide high-throughput and quantitative spatiotempo-

ral measurements of a range of cell behaviors; cell expansion and cell-division kinetics,

which will lead to a better understanding of the underlying dynamics of morphogenesis.

In this paper, we have described an automated spatio-temporal registration method of

4D live imaging stacks of tightly packed cells, and this method is suitable across tissues

which have this spatial organization of the cells in a neighborhood. The proposed

registration method first finds the best image slice correspondence from consecutive

image stacks. Then our proposed landmark-based registration method uses local graph-

based approach to automatically find corresponding landmark pairs in the images, and

finally the registration parameters computed on the selected image pairs are used to
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register the entire image stack. The proposed registration algorithm combined with an

existing tracking method is tested on multiple confocal image stacks of Arabidopsis

shoot apical meristem and the results show that it significantly improves the accuracy

of cell lineages and division statistics.
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