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Abstract—The decreasing cost and size of video sensors has led to camera networks becoming pervasive in our lives. However,
the ability to analyze these images effectively is very much a function of the quality of the acquired images. In this paper we
consider the problem of automatically controlling the fields of view of individual pan, tilt, zoom (PTZ) cameras in a camera
network leading to improved situation awareness (e.g. where and what are the critical targets and events) in a region of interest.
The network of cameras attempts to observe the entire region of interest at some minimum resolution while opportunistically
acquiring high resolution images of critical events in real time. Since many activities involve groups of people interacting, an
important decision that the network needs to make is whether to focus on individuals or groups of them. This is achieved
by understanding the performance of video analysis tasks and designing camera control strategies to improve a metric that
quantifies the quality of the source imagery. Optimization strategies, along with a distributed implementation, are proposed,
and their theoretical properties analyzed. The proposed methods bring together computer vision and network control ideas.
Performance of the proposed methodologies discussed herein, has been evaluated on a real life wireless network of pan, tilt and
zoom capable cameras.

Index Terms—Camera networks, distributed optimization, opportunistic sensing and tracking.
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1 INTRODUCTION

The focus of most work in video analysis has been on
improving the performance of detection, tracking and
recognition algorithms in a variety of settings. Large-
scale experimental analysis has consistently demon-
strated the limitations in the improvements that can
be obtained by focusing solely on the processing side.
Pose and image resolution remain two of the hardest
challenges to be overcome for robustness in scene
understanding. However, research focused on video
acquisition strategies driven by the need to maximize
performance goals have been quite limited.

Our goal is to develop ’optimal’ sensing strategies
in a network of visual sensors, with a focus on tightly
integrating the sensing and processing tasks in or-
der to image, track and identify targets effectively.
We consider wide-area scene understanding problems
where the sensors are pan-tilt-zoom (PTZ) cameras.
In keeping with normal behavior observed widely,
we assume that the scene will be populated with
people acting individually or in groups. We envision
that these visual sensors will have the capability to
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analyze their own data and perform collaborative de-
cision making in coordination with other sensors. This
would enable the sensors to maneuver themselves
optimally, i.e., change the pan, tilt and zoom (PTZ)
parameters of the cameras, so as to obtain image
sequences that can be analyzed with a high degree of
reliability. A specific challenge that this network will
have to address in the process is to decide whether to
image individuals separately or in groups.

1.1 Related Work

Historically, camera networks [1] have consisted of
mostly static cameras, where the layout is designed to
satisfy some predefined objective such as covering an
area. Optimal camera placement strategies proposed
in [2] and [3] were solved by using a camera place-
ment metric that captures occlusion in 3-D environ-
ments. The solution to the problem of optimal camera
placement given coverage constraints was presented
in [4], and can also be used to come up with an initial
camera configuration.

Currently most of data collected by these networks
is analyzed manually, a task that is extremely tedious
and limits the potential of the installed network. This
has sparked a huge interest in automated analysis
in camera networks. The authors in [5] considered
distributed estimation in camera networks, while [6]
handled distributed tracking in camera networks. A
review of automated analysis in camera networks can
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Fig. 1. Diagram depicting the framework for integrating scene analysis and PTZ control.

be found in [1]. A solution to improve performance
within the realm of static cameras is to increase the
total number of cameras observing a region and se-
lectively use a subset depending on the scene [7].
Another approach is to use a system with cameras
parameters that can be dynamically altered according
to the scene. In [8], a master-slave configuration is
used to acquire high resolution images and schedul-
ing is considered as a dynamic discrete optimization
problem. Early work done in active vision [9] looked
at the problem of moving a camera to improve im-
agery. Performing active vision in a distributed cam-
era network, where the cameras coordinate among
themselves, remains relatively unexplored.

Much of the research in controllable camera net-
works in the last decade was focused on central-
ized solutions to master-slave systems where static
cameras directed the PTZ cameras. The path plan-
ning inspired approach proposed by [10] used static
cameras to track all targets in a virtual environment
while the PTZ cameras were each assigned to obtain
high resolution video from a particular target. This
approach showed that given the predicted tracks of
all the targets, a set of one-to-one mappings between
cameras and targets can be formed to acquire high
resolution videos. A method for determining good
sensor configurations that would maximize perfor-
mance measures was introduced in [11]. The configu-
ration framework allowed for the presence of random
occluding objects. In [12], an information-theoretic ap-
proach was incorporated based on tracker uncertainty
for active scene analysis where no movement cost is
considered for selecting camera parameters.

A more recent approach in [13] and [14] uses the
Expectation-Maximization (EM) algorithm to find the
optimal configuration of PTZ cameras given a map
of activities and the value of each discretized ground
coordinate is determined using this map. The game
theoretic approach in [15] and [16] showed how lo-
cal value functions could be designed to constantly
improve the tracking accuracy of all targets observed
by a self-configuring camera network. Prior work in
target tracking with the ability to obtain high res-
olution shots was shown in [17] using a fixed cost
function. While the approaches in these papers were
decentralized and could achieve high accuracy, they

were focused largely on designing specific imaging
functions on a per-target basis, and not on the over-
all system optimization required for more complex
scenes involving interactions between multiple tar-
gets. Also, the scalability of the system was limited,
a fact that we address in Sec. (3). More discussion
on how to design games in general for distributed
optimization can be found in [18].

In recent years, group information such as track
splitting and merging, has been studied in several
tracking methods ([19], [20], [21], [22], [23], [24], [25]).
In [19], [20] and [22], group information is utilized as
a constraint in order to improve individual tracking
performance. In [23], particle filter is used to model
both individual and group information jointly. In [24]
and [25], the authors address the group tracking prob-
lem with a descriptor of appearance features. In [26],
the authors propose a person re-identification method
that finds the one to one correspondences between
targets in different cameras. However, none of these
works consider image acquisition with individual or
group information.
Main Contribution. The main contribution of this
paper is to present a general approach where in-
teresting events that the targets are involved in are
detected, and the system automatically decides when,
where and how to image these targets. An aspect that
requires particular attention in this regard is that it
is often difficult to maintain long tracks on objects,
especially when they are interacting with each other.
For example, if an individual merges with a group,
we may lose track of that individual. However, if
the group later splits, we may be able to get the
track back. This is predicated upon the availability
of high quality images at opportune moments of time
so that the tracks can be reconstructed. It is a major
motivation for this work, and the experimental results
presented later will highlight this aspect further.

1.2 Solution Overview

Configurations of cameras with large fields-of-view
(FOV) can monitor a large area of the environment
but may not be able to supply images for reliable
recognition tasks. Configurations where the cameras
are zoomed in on specific areas of interest can gather
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TABLE 1
Notation Summary

Parameter Variable
i-th camera ci
Set of all PTZ settings available to ci Ai

The PTZ setting for all cameras a
The PTZ setting for ci, all cameras except ci ai, a−i

The PTZ setting for ci and its neighbors aci

Measurement vector, measurement covariance u, C
Rotation matrix from frame a to frame b Rb

a
State vector for track j xj
Position vector for track j in world frame pw

j
Area coverage utility Uarea(a)
Imaging utility Uimage(a)
Local area coverage utility uarea(aci )
Local imaging utility uimage(a

ci )

images useful for recognition, but result in a very
limited view of the scene.

In this paper we will show how to automatically
acquire high resolution images, based on the state
of the scene and video surveillance system, while
covering a region of interest. Ideally the system would
be able to acquire detailed images of targets before
and after any events that could potentially affect the
ability to create long term tracks and recognize the
targets that are being tracked.

This framework is shown in Fig. (1) and can find
application in any visual surveillance system contain-
ing PTZ cameras. The raw video from each of the
cameras is first processed through a detector. Any
resulting detections are then associated and used to
update the target tracks by the tracker. These tracks
are then used to decide on the next set of PTZ
settings for each camera. In a traditional completely
centralized system, the raw video would be sent from
each camera to a central server where the detector,
tracker and parameter selection modules would all
be located. In the fully distributed case, each camera
would communicate only necessary information, e.g.,
the state estimates of the targets. The local objective
function of each camera must be aligned with the
global objective function such that any local decisions,
using only locally available information, improve the
value of the global objective function.

2 MODELING OF SCENE DYNAMICS

The purpose of this section is to define the time propa-
gation and measurement models of our system, which
will form the basis for evaluating the performance
of the video analysis tasks. Additional notation is
summarized in Table 1. The camera network assumes
that all the PTZ cameras are calibrated.
Time Propagation Model: With time step T = 1, as
track j moves throughout the area, its trajectory in
discrete time is modeled in state space as,

xj(k + 1) = Φxj(k) + ω, (1)

where, xj = [pwj ,v
w
j ]> with pwj = [xwj , y

w
j , z

w
j ]> is the

position in the world frame, vwj = [vwx,j , v
w
y,j , v

w
z,j ]
> is

the velocity in the world frame, and j = 1, . . . , Nt is
the track number. Also, ω ∼ N (06×1,Q) is the process
noise and

Φ =

[
I I
0 I

]
, (2)

is the state transition matrix where 0 and I ∈ <3×3.
The state estimate and its error covariance matrix are
propagated between sampling instants using recur-
sive Kalman Filter equations [27].
Measurement Model: This section derives the mea-
surement model for track j by camera i. The po-
sition of the j-th track in the i-th camera frame is
pcij =

[
xcij , y

ci
j , z

ci
j

]>, the rotation from world to the
i-th camera frame is denoted by Rciw and the position
of the camera in the world frame is pwci .

The position of track j in the i-th camera frame is
related to it’s position in the world frame by[

pcij
1

]
=

[
Rci
w 0

0> 1

] [
I −pwci
0> 1

] [
pwj
1

]
(3)

where 0 ∈ <3×1 and I ∈ <3×3 is the identity matrix.
Using the homogeneous co-ordinate representation,

the i-th camera’s image plane co-ordinates for the j-th
track can be represented as pij .The result of perform-
ing feature detection on the image from Camera i is a
two-dimensional projection of the centroid position of
the j-th track on the image plane in pixel coordinates
uij and it’s associated error covariance Ci

j . Accounting
for noise, the measurement from the i-th camera can
be modeled as

uij = h(pij) + ηij =

 xi

z
ci
j

yi

z
ci
j

+ ηij , (4)

where we assume that ηij ∼ N (02×1,C
i
j). The lin-

earized measurement model for every measurement
at time-step k is thus given by,

uij(k) = Hi
j(k)xij(k) + ηij(k). (5)

where Hi
j is the observation matrix [28].

Detection, Association & Tracking: In our framework
we assume that the detector for each camera provides
a centroid position uij and error covariance Ci

j on the
image plane for each detection. The resulting detec-
tions can then be associated to existing tracks using
any existing data association technique. A review of
object tracking methods can be found in [27]. It will
typically be the case that each camera only detects
some of the targets.

There are several different events that affect our
tracker. When the probability that a detection is asso-
ciated to an existing track is below a threshold, a new
track is initialized by transforming the centroid posi-
tion and error covariance of the detection to the world
frame as the targets are on the ground plane. Since
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the relation between the image and ground planes is
non-linear, we use Eqn. (5) to perform measurement
updates for the state estimates and error covariances
for tracks using an Extended Kalman filter.

3 DISTRIBUTED SOLUTION

One of the challenges in vision networks is scalability
with the size of the network. This motivates us to
provide a distributed solution to the problem, where
each camera is able to communicate with its neigh-
bors, as defined by a communication graph described
below. In the proposed distributed network, the cam-
eras are only able to communicate directly with their
immediate neighbors on the communication graph
and only have access to information provided by these
neighbors. A major benefit of such a framework is that
new cameras with varying capabilities can be easily
added or removed from the network at any time. We
do not address the problem of distributed tracking
and data association, as these have been presented in
recent work [29], [30] and [31] can be used directly.

In a distributed camera network, the camera com-
munications are modeled by a communication graph.
To ease computation we quantize the entire area B
into a set of blocks, B = {b1, b2, ..., bNb

}. Bi ⊆ B is the
set of blocks for which there exist a valid parameter
setting so that the block is in the Field of View (FOV)
of camera ci.

Definition 1. The communication graph has cam-
eras as nodes and there exist an edge from camera i′

to camera i′′ when those cameras can directly receive
information from each other.

Definition 2. In vision graph, cameras are repre-
sented as nodes. The graph has an edge from camera
i′ to camera i′′ when the set of blocks Bi

′ ∩Bi′′ 6= ∅.
These graphs are important to our problem as

the communication graph determines who knows what
and when, while the vision graphs determines which
cameras can share operation regions (i.e., have over-
lapping FOV’s when their PTZ parameters are appro-
priately chosen). The example in Fig. (2(a)) shows 4
cameras each covering a portion of the area. For the
regions Bi depicted in Fig. (2(a)), the corresponding
vision graph is represented by Fig. (2(b)).

3.1 Design of Local Utility Function
In a distributed camera network, one possible solu-
tion is to design the objective functions so that they
implement a potential game [18], which guarantees
that the cameras will converge to a Nash equilibrium
(N.E.) (see Sec. 3.4 for the proof). While this is a
distributed solution there are a few undesirable char-
acteristics such as allowing only one camera to change
its proposed parameter settings at each iteration step
[16]). The existing literature only accounts for the
communication graph connectivity and the amount of
communication increases with the number of cameras.

In the following, we incorporate information from
the vision graph by considering the cameras that can
affect the value of the local camera’s PTZ settings.

We present a design of the value functions for the
different objectives of our system. In the following
sections let Ci ⊆ C be the set of cameras contain-
ing ci and its neighbors in communication graph,
Aci = ×i∈Ci

Ai be the set of possible PTZ settings of
the cameras in Ci.

Local Area Coverage: Instead of considering
all cameras in the network, we write the local area
coverage utility to only consider the pan tilt and zoom
settings aci ∈ Aci as,

uarea(aci) =
∑
p∈Bj

1−
∏
q∈Ci

(1− βqp)

 . (6)

where Bj is the set of blocks observed by the cameras
in Ci and βqp is defined as

βqp =

{
1− e−λ1

r
q
p

rmax
p if rmaxp > rqp > rminp

0 otherwise
, (7)

rminp is the minimum acceptable resolution in terms of
pixel height at which p− th block should be viewed,
rmaxp is the maximum height of the target in pixels of
ci’s image plane, and rqp is the resolution at which
block p would be imaged for the proposed action
aci . The conditions under which this value function
increases are when area covered with an acceptable
resolution increases or the area can be viewed at a
higher resolution.

Eqn. (6) implies that only cameras who are neigh-
bors of ci in communication graph can affect this
utility value. By defining the local utility in such a
way, the change in value of the local utility, denoted
by ∆uarea, and global utility ∆Uarea, by a change
in the PTZ parameters of camera in ci from ai to bi
(where ai, bi ∈ Ai) are related by:

∆uarea = uarea(bi,a
ci
−i)− uarea(ai,a

ci
−i)

=
∑
l∈Bi

1−
∏
j∈Ci

(1− βjl )

∣∣∣∣∣∣
bi

−

∑
l∈Bi

1−
∏
j∈Ci

(1− βjl )

∣∣∣∣∣∣
ai

= Uarea(bi,a−i)− Uarea(ai,a−i) = ∆Uarea.

(8)

This is true because Bi contains all blocks that can be
affected by a change in ai in Uarea and all the cameras
that can affect the value of blocks in Bi are in the set
Ci ⊆ C.

Local High Resolution Imaging: The local value
function for high resolution imaging of the tracked
objects can then be written as,

uimage(a
ci) =

∑
j∈T i

(
1−

∏
k∈Ci

(1− ζkj )

)
sj , (9)
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(a)

(b)

Fig. 2. (a) Shows Field of View(FOV) for 4 cameras
as closed trapezoids. The dotted rectangles show the
possible area that can be covered given all the settings
available to each camera. (b) Shows the corresponding
vision graph, connecting cameras can have overlap in
their fields of view.

where T i are the targets being viewed by the cameras
in the set Ci. ζkj is defined as

ζkj =

 1− e
−λ2

rk
j

rmax
j if rmaxj > rkj > rminj

0 otherwise
, (10)

Here rkj is the resolution weighted by the probability
pj,l of a target j is at block l which is computed using
p̂wj (k)+ and P̂w

j (k)+ and can be written as,

rkj =

{ ∑
bl∈Bj

(
pj,lr

k
l

)
, if ∀bl ∈ Bj , rkl > 0

0 otherwise
, (11)

The scaling parameter sj in eqn. (9) is an importance
factor to weight the value of getting high resolu-
tion images of target j by changing it dynamically
over time. We populate this variable using a function
monotonically increasing in time, initialized to a low
value when a new track j is added to the system. Once
a high resolution image of the track has been acquired
sj = 0 for the remaining lifetime of the track.

3.2 Communication & Vision Graphs

The change in value of the local and global utility for
high resolution imaging defined in eqn. (9), denoted
by ∆uimage and ∆Uimage respectively. The relation-

ship between ∆uimage and ∆Uimage are given by,

∆uimage = uimage(bi,a
ci
−i)− uimage(ai,a

ci
−i)

=
∑
j∈T ci

(
1−

∏
i∈Ci

(1− βil )

)∣∣∣∣∣∣
bi

−

∑
j∈T ci

(
1−

∏
i∈Ci

(1− βil )

)∣∣∣∣∣∣
ai

= Uimage(bi,a−i)− Uimage(ai,a−i) = ∆Uimage

(12)

This is true because only targets who have a proba-
bility of being in Bi can be affected by a change in ai,
and the only cameras that can affect blocks in Bi are
the neighboring cameras Ci.

Local Utility Function: Given the new local value
functions for area coverage and high resolution imag-
ing defined in eqns. (6) and (9). The utility function
representing the local value of the system can be
represented as

ulocal(a
ci) = uarea(aci) + uimage(a

ci), (13)

and the change in ∆ucilocal, global utility ∆Uglobal and
the PTZ parameters of camera in ci from ai to bi
(where ai, bi ∈ Ai) are related by:

∆ucilocal = ulocal(bi,a
ci
−i)− ulocal(ai,a

ci
−i)

= ∆Uglobal.
(14)

Since a change in the local utility ∆ucilocal is equivalent
to the change in the global utility ∆Uglobal for any ai.
We can increase the global utility by increasing any
camera’s local utility.

3.3 Distributed Optimization Algorithm
The alignment between the local utility and the global
utility is nessesary to ensure that local decisions are
coordinated with the global objective of the system.
Given the local utility defined in eqn. (13) and its
alignment to the global utility of the camera network
we modify the algorithm run at each camera i so that
more than one camera can change PTZ parameters at
each time step.
Step 1: ci computes the best PTZ setting,

max
ai∈Ai

(∆ucilocal), (15)

for camera i and send the proposed setting ai and
utility maxai∈Ai

(∆ucilocal) to all neighboring cameras.
Step 2: Recieve the proposed setting a′i and utility
maxa′

i
∈A′

i
(∆u

c′i
local) from each other camera in the net-

work.
Step 3: If ci can provide the greatest improvement,

max
c′
i
∈Ci

( max
a′
i
∈A′

i

(∆u
c′i
local)) = max

ai∈Ai

(∆ucilocal), (16)

then execute the proposed settings. In the case that
multiple cameras have the same improvement any tie
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breaker such that g(ci, c
′
i) = g(c′i, ci) can be used.

Step 4: Send current settings to all neighoring cam-
eras.
Step 5: Recieve current settings from all neighoring
cameras and update aci .

3.4 Deterministic Equilibrium
We now analyze the convergence characteristics of the
distributed optimization algorithm addressed in Sec.
(3.3) and show that the cameras can arrive at a Nash
equilibrium (N.E.) with one or more cameras deciding
to change parameters simultaneously.

Definition 3. A path in the parameter space S of
the camera network is a sequence of camera network
parameters (a1,a2, ...,aNS ) such that each two con-
secutive camera network states differs in at least one
camera PTZ setting.

Definition 4. An improvement path is a path in
which Uglobal(a

k) < Uglobal(a
k+1), where ak and ak+1

differ in at least one camera state, for all k = 1, 2, ....
Definition 5. The camera network is at a Nash

equilibrium if ∀a−i ∈ A−i and ∀ai, bi ∈ Ai, ∆Uglobal =
Uglobal(bi,a−i) − Uglobal(ai,a−i) ≤ 0 and ∆ucilocal =
ulocal(bi,a

ci
−i)− ulocal(ai,a

ci
−i) ≤ 0.

Claim 1: Given a fixed environment and an arbi-
trary set of initial camera settings, the network of
cameras will improve upon the global utility Uglobal
until it reaches a Nash equilibrium.

Proof: As there are a finite number of camera
network configurations, it is easy to see that every
improvement path is finite and arrives at a Nash
equilibrium. If the camera network is not at a Nash
equilibrium then there is a set of cameras such that
maxai∈Ai

(∆ucilocal) > 0. After applying the condition
in Eqn. (16) the set of cameras that decide to move
is Cmove ⊆ C resulting in the camera network state
amove. Also, ∀c′i, c′′i ∈ Cmove, c′i /∈ C ′′i and c′′i /∈ C ′i. This
means that the contribution of c′i to the global utlity
is independent of the contribution of c′′i . The resulting
change in the global value can then be written as

∆Uglobal|amove
=

∑
i∈Cmove

(∆ucilocal|amove
). (17)

Since ∆ucilocal|amove > 0,∀i ∈ Cmove, then
∆Uglobal|amove

> 0. Thus by Def. (4) and (5) the
camera network is either at a N.E. or moves along
an improvement path.

4 EXPERIMENTAL ANALYSIS & RESULTS

In this section we will explain the details of our exper-
imental setup and our results. The experiments were
performed on a wireless PTZ camera network con-
sisting of Axis 215 PTZ-E cameras over a 20m× 30m
region. As we do not currently have the capability
to access the video from the cameras directly and
commands must be sent across the wireless network
through the provided VAPIX API resulting in poor

response time due to latency. In our physical system
we noticed a delay ranging from 80ms to 200ms for
each message to arrive over TCP. This limits the rate
at which we can change the parameters of the camera
network as there is significant delay in the video
response after sending a command.

The detection method we used in our experiments
was very simple in design. First the area was uni-
formly divided into a number of overlapping blocks,
each 1m×1m×1.8m. The frames from each camera are
processed using a motion subtraction [32] algorithm
to generate a motion image. The blocks in the cameras
operational region are then mapped to the image
plane using the homography.

In this implementation we make no assumptions as
to the number of people present in each detection or
track. Two people walking close together may result
in a single detection with a covariance encompassing
both. This means that if two people stay close together
for the duration they are in the region they will be
tracked as a group rather than as two individual
tracks. Since we do not explicitly count the number
of people in each track, a few special events such as
track split and track merge can occur.

Split track: When two or more people who are
walking together start drifting apart, the detector
will return multiple detections that associate to their
existing track. The existing track is removed and one
new track for each detection is created.

Merge track: When two or more people start walk-
ing ever closer to each other, the detector will even-
tually return a single detection for all of the people.
This event occurs when one detection associates to
more than one track. In such cases the existing tracks
are removed and a new track is created for the group.

One thing to note here is that as people form groups
or split apart there is a short time period where
multiple track split and track merge events may occur
rapidly until they are close enough to form a group or
far enough apart to be tracked separately. The scaling
parameter sj is tuned such that high resolution images
are not prioritized until after a track has existed for a
period of time so as to avoid capturing multiple high
resolution images during merge and split events.
Parameter Selection: There are many ways to speed
up the search for the PTZ setting that maximizes the
local utility, the easiest approach is to increase the
quantization of the parameter space. For our experi-
ments the available pan settings were quantized into 5
degree increments and bounded based on the position
of the camera and the area under surveillance. The tilt
settings were quantized into one degree increments
and was restricted to a maximum tilt of 30 degrees.
Each camera also was restricted to three different
zoom settings. Some additional techniques such as a
lookup table were also used to improve the compu-
tation speed such that each camera can detect, track
and decide on parameters within a 33ms time window
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(a) (b)

(c) (d)

Fig. 3. Scene involving a pair of people and two individual people. The images show the result when two of
the tracks merge into a new group. (a) Two individuals and a group of two people are distinguishable by the
detections, shown in red boxes, in the bottom middle camera. (b) Shows that the detections of the group of two
and an individual in the scene can no longer be separated and a new group is formed. (c) A high resolution
image is acquired by the upper left camera. (d) The cameras reconfigure the cover the area.

on a 2.66GHz Intel Core i560m. The communication
overhead of our physical setup reduces the rate at
which our cameras change their parameters.

4.1 Experimental Results

We ran a number of different test scenarios through
our system. A video of all the scenes is available
at http://www.ee.ucr.edu/ ∼amitrc/CameraNetworks.php.
Here, we will explain two of them (scene 4 and
5 of the video) that will demonstrate all possible
cases such as track splitting, merging and individual
tracking. The objective is to cover the entire area while
opportunistically acquiring high resolution shots of
people in the area.

First Scenario. In this scenario, two pairs of people
enter the scene from opposite sides of the courtyard.
One pair splits up shortly upon entering the area,
while the other pair stays together. Some time after
the first group split, one of its members walks towards
and joins together with other pair forming a group of
three as they proceed to exit the area.

The system is expected to form a track and acquire
a high resolution image for each of the initial pairs of
people. After the first group splits, two new tracks are
expected to be created and high resolution images of
each should be taken. When the track of the second
pair and one of the members of the first pair merge,
the system is expected to create a new track and
capture a corresponding high resolution image.

Fig. (3) shows the behavior of the camera network

in response to the merging of the tracks. In Fig. (3(a))
we can see three tracks, two people walking alone and
a pair of people walking together. As two of the tracks
start getting closer, it becomes more difficult for our
basic detector to separate the pair of people from the
person walking alone. This can be seen in Fig. (3(b))
as the tracks merge to form a group of three people.
A high resolution image is taken in Fig. (3(c)) a short
while after the formation of the new track.

Second Scenario. The final scenario is the most
complicated and shows how the system behaves
when it does not have the time to complete all
the desired tasks. In this scenario four people enter
the courtyard from each of the four corners within
seconds of each other. They each walk towards the
opposite end of the courtyard resulting in the four of
them meeting in the center of the courtyard before
reaching their final destinations.

As the paths of the people in the scene start
intersecting (shown in Fig. 4(a)) it becomes more
difficult to segment the detections of the individuals
and results in the merging of all four people into
a new single track as in Fig. (4(b)). Since this is a
large group covering a significant portion of the
area, very little area is needed to be sacrificed to
take a high resolution image of the entire group
resulting in the image shown in Fig. (4(c)). During
the time period where the four tracks are becoming
merged into one, many short lived tracks are created
as the detector begins to have difficult separating
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Shows the sequence of images taken in response to merging and splitting tracks. (a) As the targets move
closer together their tracks begin to merge into a single track. (b) The 4 people have grouped together to create
a new track. (c) A high resolution image of the entire group is taken by the upper left camera. (d) The targets are
beginning to split apart. (e) A new track is created for each individual as there is enough separation to generate
stable tracks. (f), (g) and (h) show high resolution images are acquired for 3 of the individual tracks. (i) The 4th

target is leaving the surveillance area before the network could take a high resolution shot (yellow box).

individual tracks. If the targets stay in a position
where the detector cannot consistently separate or
group them together, a long term track will not exist
and no high resolution images will be acquired. As
the scene progresses, the people start to separate as
can be seen in Fig. (4(d)). A short while after the split,
distinct tracks for each person can again be formed
in Fig. (4(e)). A sequence of high resolution images
for each of the targets are then taken as shown
in fig. (4c-e). It is important to note that the third
high resolution image is only taken after the other
two zoomed in cameras have returned to covering
a significant portion of the area. As more cameras
zoom in for high resolution images, the amount
of area covered by overlapping FOVs decreases.
Due to the trade-off between the value gained from
area coverage and high resolution imaging, the
less cameras responsible for covering the area, the
less likely a camera will zoom in for a detailed image.

4.2 Analysis of Active Selection

We analyze the active vision scenario (high resolution
shots) in terms of number of Pixels. We determine
average and maximum number of pixels with and
without active selection of cameras. Number of pixels
is calculated from every frame within a specific time
span for both with and without zoom and averaged
over total frames to find average number of pixels.
In Table 2, average and maximum number of pixels
of whole target and face region of the targets are
provided to demonstrate the effect of active control in
terms of resolution. Since the operations in aforemen-
tioned scenarios are similar, we choose 4 targets from
the final scenario to compute the number of pixels.
In final scenario, all targets have been zoomed in
twice- before track merging and after track splitting.
Only target 1 has been zoomed in once- before track
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TABLE 2
Quantitative Analysis of Active Control

Avg. Nb Avg. Nb Max. Nb Max. Nb
Targets of Pixels of Pixels of Pixels of Pixels

(with No (with (with No (with
control) control) control) control)

1. Face 171.70 1058.27 231.00 4228.20
Whole Body 515.11 3386.48 693.00 12896.00
2. Face 176.81 735.15 480.00 4318.94
Whole Body 530.44 2278.96 1440.00 13000.00
3. Face 317.67 852.57 480.00 4201.32
Whole Body 953.01 2728.21 1440.00 12688.00
4. Face 321.00 785.21 783.33 4819.74
Whole Body 963.00 2434.14 2350.00 14652.00

merging; after track splitting it is lost. High resolution
shot acquired through active selection strategy gives
us detailed information about targets.

4.2.1 Network Delay
In the second scenario as shown in Fig. 4(i), we can
see that a high resolution image of one of the targets
was not acquired before he exited the area after the
group split. This is because the time span from when
the individual track was created until the time he
left the area was too short for any camera to gain
utility from capturing a high resolution image. If
the delay of the network was very small or almost
instantaneous, it would have been possible to capture
the high resolution shot of the target.

4.2.2 Communication Cost
In the centralized scheme data needs to be present
at a central server. As the number of cameras in-
creases the communication cost becomes high. There
are many distributed frameworks, some are consensus
based and some are not. The non-consensus based
distributed network presented in [16] allows only one
camera to change their PTZ setting at each iteration
time. When we scale the size of the camera network
this can quickly become a problem. To overcome
this, we design a distributed system in a way that
only camera nodes that are part of the vision graph
will exchange information with each other since they
sense the same target. The number of such cameras
looking at a particular target will usually be small
in most applications. Thus the amount of data that
is exchanged between these cameras is much lower
than a centralized case since central server needs to
access all the information from all the cameras in
the network. For example, if there are a total of Nc
cameras in the network and Nv in a particular clique
of a vision graph (i.e., cameras that sense the same
target and thus need to exchange information about
that target), the relative amount of data exchanged in
the distributed case is Nv/Nc of the centralized case
(approximately). For typical values of Nv and Nc, we
can see that the distributed case provides significant

TABLE 3
Data Transfer Rate for Distributed (with Different

Clique Sizes) and Centralized Scheme.

Distributed Scheme Centralized Scheme
Clique-2 Clique-3
5.750 MB/s 8.775 MB/s 15.125 MB/s

reduction in communication cost. In Table 3, data
transfer rate for distributed and central network has
been provided. Here, Nc = 5 and Nv = {2, 3} are used
in vision graph.

5 CONCLUSION

We described an active camera parameter selection
method for capturing high resolution images of tar-
gets, when certain events occur, while maintaining
coverage of a large area using a camera network. A
key contribution of this article is showing how the
parameter selection can be distributed in a network
so that multiple cameras can change parameters si-
multaneously while prior approaches allowed only
one camera to update its parameters at a time. Fu-
ture work should consider co-design methodologies
whereby the effect of communication limitations or
processing capabilities are modeled in the camera
control objective functions.
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