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Exploiting Spatio-Temporal Scene Structure for
Wide-Area Activity Analysis in Unconstrained

Environments
Nandita M. Nayak, Yingying Zhu, and Amit K. Roy-Chowdhury

Abstract—Surveillance videos typically consist of long duration
sequences of activities which occur at different spatio-temporal
locations and can involve multiple people acting simultaneously.
Often, the activities have contextual relationships with one
another. Although context has been studied in the past for
the purpose of activity recognition to a certain extent, the
use of context in recognition of activities in such challenging
environments is relatively unexplored. In this paper, we propose
a novel method for capturing the spatio-temporal context between
activities in a Markov random field. The structure of the MRF
is improvised upon during test time and not pre-defined, unlike
many approaches that model the contextual relationships between
activities. Given a collection of videos and a set of weak classi-
fiers for individual activities, the spatio-temporal relationships
between activities are represented as probabilistic edge weights
in the MRF. This model provides a generic representation for
an activity sequence that can extend to any number of objects
and interactions in a video. We show that the recognition of
activities in a video can be posed as an inference problem on the
graph. We conduct experiments on the publicly available UCLA
office dataset VIRAT dataset to demonstrate the improvement
in recognition accuracy using our proposed model as opposed to
recognition using state-of-the-art features on individual activity
regions.

Index Terms—Context-aware activity recognition, Markov ran-
dom field, wide-area activity analysis.

I. INTRODUCTION

Activity recognition is a challenging task in realistic en-
vironments. A long-term wide-area surveillance video usually
consists of multiple people entering and exiting the scene over
a period of time. Therefore, it is hard to predict the number
of activities occurring in the scene and the number of people
involved in those activities. This variability in the number of
actors and the number of action executions within the sequence
is what we term as an “unconstrained” environment in this
paper. Most existing activity recognition algorithms focus on
the region where an activity occurs while ignoring the con-
textual information in the surroundings. Such methods place
assumptions on the number of objects, scale and viewpoint of
the scene and may not be equally effective in more challenging
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Fig. 1. a) An example scene from a surveillance video in a parking
lot demonstrating that different different activities happen together and can
influence each other. “Open door”, “unloading vehicle” and “approaching
vehicle” are related since they pertain to the same vehicle. Other objects in the
scene can cause background clutter making the recognition task challenging.
b) the spatio-temporal relationship between two activities in a video.

environments. Often, it has been found that examining the
surroundings of an activity under consideration in a scene
can provide useful clues about the activity. This information
obtained from the surroundings is termed as “context” of the
activity.

In this paper, we propose to use activities themselves as
providing contextual information to other activities in their
vicinity. The modeling of this contextual information along
with a traditional activity recognition system can provide
improved recognition rates in challenging environments.

The use of context is actively being explored in computer
vision today. The use of any data in the video which does not
directly correspond to the object or activity being analyzed
can be termed as context. Consider a wide area surveillance
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scene consisting of multiple actors performing a series of
activities. Unlike sports videos which are governed by a fixed
set of rules, these videos are unconstrained and contain a
variable number of objects and activities. By unconstrained,
we mean that the activities might be related but do not
unfold according to set rules. In such long duration sequences,
we can expect that several activities would influence each
other causally while some others might occur independently.
However, inferring these causalities is not trivial due to the
presence of multiple actors. Also, tracking in such sequences
can be challenging due to the presence of clutter and occlusion.
In this work, we propose to model the spatio-temporal context
between individual activities in a long duration sequence using
a Markov random field. Since the number of actors can vary
from one sequence to another, we propose to construct the
graphical model which is specific to a test sequence.

Most existing activity recognition approaches aim at rec-
ognizing atomic activities or a single interaction in a short
video clip. Real world videos tend to have a large amount
of intra-class variation as well as clutter and noise which
makes the recognition task difficult. Therefore, although the
standard recognition methods can be applied here, it is difficult
to obtain a high accuracy results with existing classifiers. A
typical example of an outdoor wide area scene is shown in
Figure 1 a). The different challenges in recognition are marked
on the figure. Figure 1 b) shows the spatial and temporal
relationships between two activities in a video. The presence
of multiple activities, however, also imply that we now have
more information available to us about the scene as a whole,
as compared to a small clip containing a single atomic activity.
Activities in a video are often related to each other. For
example, the fact that a person opens the trunk of a car makes
it very likely that he might place or retrieve an object from the
trunk. In addition, if we knew that the person had just exited
a facility, it is more likely that he will place an object rather
than retrieve it. Therefore, the occurrence of one activity can
provide us a context which can be used to recognize another
related activity. In this work, we wish to demonstrate a method
to model this context and utilize the information to recognize
activities in a complex video.

The key idea behind our approach is that, if two activities
are related, they can be expected to occur within a small spatio-
temporal vicinity. The spatial separation, temporal separation
and the association frequency of these activities can therefore
be modeled as context for recognition of these individual
activities. Given a collection of videos and a set of baseline
classifiers for atomic activities, we wish to learn the spatio-
temporal relationships between atomic activities and model
them. The relationships are learnt from the training data. We
propose to have a Markov Random Field model over the
test sequence, with the edge potentials modeling the spatio-
temporal relationships between them. The baseline classifiers
(which are assumed to provide a weak classification) give us
the node potentials. An inference on this MRF will help us
estimate the activities in the sequence.

A. Contributions
The main contributions of this work are the following.

1) We propose a generalized formulation for modeling
the contextual relationships between activities in the
presence of multiple actors and when they are acting
simultaneously in the scene. They could be interacting
with each other or acting independently.

2) We take a probabilistic approach to modeling relation-
ships between activities. We model the spatial relation-
ships, temporal relationships as well as the association
frequencies into the potential functions of a random field
model. Inference on this graph gives us the estimate
of the categories to which each activity corresponds.
We perform experiments on realistic videos containing
multiple activities spread over space and time with high
amount of clutter and noise.

3) We define the structure of the graphical model on the
test sequence rather than having a pre-defined structure.
This gives us the flexibility to model different number
of individuals and different number of activities based
on the test sequence. We demonstrate that studying the
pair-wise relationships between activities during training
is sufficient for this purpose. We also propose a way of
iteratively modifying the graph structure to arrive at one
which is more likely to capture important relationships,
thereby increasing the activity recognition confidence.

B. Overview

An overview of our proposed model for activity recognition
in activity sequences is shown in Figure 2. Given a long-
term video, the goal of our approach is to estimate the
category to which individual activity belongs. We assume
that we have some training videos available, each of which
have one or more sequences of activities occurring in dif-
ferent spatio-temporal regions. Each spatio-temporal region
where a potential activity takes place is termed as an activity
region. We also have available a set of baseline classifiers
C = {c1, c2..cN}, which can output a probability of an activity
region y belonging to a particular class ci, i.e. P (ci|y).

A typical surveillance video, such as a parking lot video
(shown in Figure 1) contains several activities occurring
simultaneously or in succession in different portions of the
scene. The number of objects, people and activities change
from one video sequence to another. Having identified the
activity regions in a video using the baseline classifiers, and
having clustered them into sequences which are potentially
related to each other, we explore three key aspects to improve
the accuracy of recognition: 1) The relationship in the spatial
locations of activities, 2) the relationship in the temporal
locations of activities and 3) the probability of association of
two given activities, i.e., the probability that one activity might
occur in the vicinity of another.

These concepts are modeled by a Markov random field
(MRF). Since the MRF is used to model the context infor-
mation across activities, we choose the nodes of the MRF
as atomic activities rather than pixels or image regions, as is
commonly done in image segmentation. Each edge represents
the spatio-temporal context between the activity nodes that it
connects. The node potentials are obtained using the likelihood
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Fig. 2. Figure shows the illustration of our proposed method. Training involves modeling the pairwise spatio-temporal relationships between different activity
regions which are provided in annotations as mentioned in Section II-C2. For a test video, activity regions are identified using the method presented in Section
III-B. Using the potentials from training data and observation potentials as described in Section II-C1, the node labels are inferred (Section II-D). We also
propose a method to improve the structure of the graph to capture the best dependencies (Section II-E. The MRF model is enlarged in Figure 3.

of the activities given by the baseline classifiers. Since the
number of activities differs from one sequence to another,
the structure of the MRF is tuned to the test sequence in
an iterative manner based on the spatio-temporal locations of
activities. The edge potentials are learnt from the training data.
We perform inference on the resulting MRF to estimate the
activities in the test sequence. We conduct experiments on the
UCLA office dataset containing indoor office sequences and
the publicly available VIRAT dataset containing parking lot
videos.

C. Related Work

A major thrust of research in complex activity recognition
has been in the selection of features and their representations,
most of which have dealt with single activity clips [1]. Dif-
ferent representations have been used in activity recognition,
such as space time interest points (STIP) [2] and histogram
of optical flow [3]. In this work, we deal with long duration
videos and explore the contextual information between differ-
ent activities in the video to arrive at a representation of the
scene.

Graphical models are commonly used to encode relation-
ships in video analysis. A grid based belief propagation
method was used for pose estimation in [4]. Stochastic and
context free grammars have been used to model complex
activities in [5]. Co-occurring activities and their dependencies
have been studied using Dependent Dirichlet Process - Hidden
Markov Models (DDP-HMMs) in [6]. In our work, we propose
a Markov random field framework which can handle varying
number of actors and activities.

Spatio-temporal relationships have played an important role
in the recognition of complex activities. Methods such as
[7]and [8] explore spatio-temporal relationships at a feature

level. The spatial and temporal relationships between space-
time interest points have been encoded as “feature graphs”
in [9]. Although such methods have been applied to multiple
activities occurring simultaneously, it may not be practical to
construct such graphs over long term video sequences and do
not explore the relationships across activities. Complex activ-
ities were represented as spatio-temporal graphs representing
multi-scale video segments and their hierarchical relationships
in [10]. Most of these papers focus on the modeling of low
level features for recognition. Variable length Hidden Markov
models are used to identify activities with high amount of
intra class variabilities in [11]. In this paper, we have modeled
the spatio-temporal relationships between different activities
which form a higher level representation.

Context has been widely used in the past in the task of
object recognition, and more recently in activity recognition.
Spatial relationships between objects have been modeled using
graphs for new object category discovery in [12]. The authors
in [13] use objects as context for activities and vice versa.
Similarly, association of tracks with activities and the gener-
ation of a high level storyline model using AND-OR graphs
has been performed in an EM framework in [14]. Contextual
information between different actors in group activities has
been studied in [15]. Spatial context between objects and
activities has been modeled in [16]. Spatio-temporal context
in structured videos with manually defined rules has been
modeled using Markov Logic Networks in [17]. We propose a
generalized formulation for context modeling that is suited for
unconstrained video sequences such as outdoor surveillance
videos. The key aspects of such sequences is that there is
no constraint on the number of actors in the scene or the
number of activities in the sequence. Also, different actors in
the scene may act independently or interact with each other if
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they choose to do so.
Some of the previous approaches such as [18] assume

a known structure of the graph for context representation.
Models such as the AND-OR graphs or other tree structures
have been suggested in the past [19] [14] for modeling sports
sequences and office environments. These models however, are
more suited for structured environments where there are a set
of rules governing the behavior of people such as in sports, or
where the number of objects/activities or the combinations of
sub-activities are limited as in an office environment. Applying
such models to unconstrained sequences can be laborious due
to the exponential number of combinations of activities which
have to be learnt here to construct such models. Similarly,
papers such as [20] use context to infer a collective activity
using single person activities. In such sequences however,
it is assumed that all participating persons/objects contribute
to the collective activity. Whereas, in a typical surveillance
scenarios, different actors may or may not be interacting with
each other, therefore such models cannot be directly applied
here. The authors in [21] deal with recognizing a single
activity over multiple cameras by topology inference, person
re-identification and global activity interpretation. Here, we
are dealing with a set of different activities which may or
may not be correlated, therefore a Markov random field is a
more suited model to capture these complex spatio-temporal
relationships. Social roles for hierarchical representation of
activities in sports videos is explored in [22]. Most of this
work deals with short duration videos or with videos with
a pre-defined structure such as sports videos. We propose to
define the structure of the graph on the test sequence rather
than use a pre-defined structure.

The next section explains the construction of the MRF in
detail.

II. GRAPHICAL REPRESENTATION OF ACTIVITIES

To begin with, we will define the commonly used termi-
nologies in the paper for a clear understanding of our proposed
method.

A. Definitions

• Activity - A meaningful event in the video which we
wish to identify. Our objective is to assign every activity
a class label in the range c1..cN .

• Activity region - A spatio-temporal volume in which the
activity takes place. An activity region Ai is represented
by its spatial and temporal centroids si and ti.

• Activity Sequence - A set of activities which occur in
close proximity with each other and can have causal in-
fluences on each other. Each activity sequence is modeled
as a Markov random field and evaluated.

B. Proposed Model

The goal of our algorithm is to model the space-time
relationships between the activities in a scene using a Markov
random field. The MRF is an undirected graph G = (V,E),
with a set of nodes V and a set of edges E. Given a

Fig. 3. Figure shows the Markov random field constructed over a spatio-
temporal volume for an activity sequence. Shown in the figure are the activity
regions which form the observation variables y. The baseline classifier output
forms the observation potential. The labels of the activities which have to be
predicted constitute the hidden nodes x. The edges of the graph are learnt
iteratively.

video sequence to be recognized, we first construct an MRF
over all probable related activities in the sequence. Each
node denotes an activity and an edge represents the spatio-
temporal relationship between two activities. There are a set
of observations Y = {y1..yn} and a set of hidden variables
X = {x1..xn} for a sequence of n activities. An observation
node yi denotes the image observation of an activity, which
are the features computed over an activity region. The output
of the baseline classifiers for each activity is used to compute
an observation potential. A hidden node denotes an atomic
activity to be estimated. A node xi can be defined as

xi = (ci, si, ti), (1)

where xi denotes a node, ci denotes the activity class to which
it belongs, si is its spatial location and ti denotes its temporal
location. The MRF is given by

Ψ =
1

Z

∏
i,j∈E

ψst(xi, xj)
∏
i∈V

ψo(xi, yi), (2)

where Ψ is the overall potential. Here, we assume that the
MRF factors over the edges. There are two kinds of potentials
associated with the graph. ψst(xi, xj) is the edge potential
which is the spatio-temporal relation between two hidden
nodes connected by an edge and ψo(xi, yi) is the observation
potential of a node. Z is the normalization constant. The
illustration of our proposed graphical model is shown in Figure
3.

C. Potential Functions

The node observation potentials and the spatio-temporal
edge potentials are defined as given below.

1) Observation Potential: The observation potential or the
node potential is the evidence of the activity obtained from the
video data. These are obtained from the image observations
of the activities which are the baseline classifiers. We have
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one baseline classifier per activity class, the output of which
is the probability of the given activity belonging to a particular
category. We use a Bag-Of-Features approach over space-
time interest points [23] as our baseline classifiers due to its
popularity for recognition of atomic activities. Specifically,
space-time interest points based on Harris and Forstner op-
eraters are computed over the training set. A feature vector is
generated for each point. During training, a codebook is build
by clustering and quantizing these features. Each category of
activity is modeled as a distribution over this vocabulary. The
interest points are computed over the test video and regions
with significant number of points from the vocabulary are
said to be the activity regions, denoted as the observation
variables yi. A discriminative classifier such as a multiclass
SVM classifier is used to compute the probability of an
activity region belonging to a particular category P (cj |yi).
These probabilities are learnt jointly over the training data.
The observation potential is therefore defined as

ψo(xi, yi) = p(xi|yi, C), (3)

where ψo is the observation potential, yi is the observation
variable and C is the set of baseline classifiers. It is to be
noted that any other set of features or algorithm can also be
used for the baseline classifiers.

2) Spatio-temporal Potential: The spatio-temporal potential
is defined on edges connecting the activity variables in the
graph. Actions which are within a spatio-temporal distance
of each other are assumed to be related to each other. There
are three components to this potential: the spatial component,
the temporal component and the association component. The
spatial component models the probability of an activity be-
longing to a particular category given its spatial configuration
with its neighbor. Similarly, the temporal component models
the probability of an activity belonging to a particular category
given its temporal distance with its neighbor. The association
component is the probability of two activities being within a
pre-defined spatio-temporal vicinity of each other. The spatial
and temporal components are modeled as normal distributions
whose parameters µs, σs, µt and σt are computed using the
training data. The spatial component is given by

ψs(xi, xj) = Nsd(∥si − sj∥2;µs(ci, cj), σs(ci, cj)), (4)

ψt(xi, xj) = Ntd(∥ti − tj∥2;µt(ci, cj), σt(ci, cj)). (5)

where µs(ci, cj),σs(ci, cj), µt(ci, cj) and σt(ci, cj) are the
parameters of the distribution of relative spatial and temporal
positions of the activities, given their categories. The associ-
ation probability fij is computed as a ratio of the number of
times an activity category cj has occurred in the vicinity of
activity category ci to the total number of times the category ci
has occurred. Therefore, the spatio-temporal potential is given
by

ψst(xi, xj) = fijψs(xi, xj)ψt(xi, xj) (6)

In a general case, these potentials would be learnt jointly
over a pre-defined graph. However, in our case, although
we deal with long sequences of activities, we have found
that the activity pairs which are the closest spatio-temporal

neighbors provide sufficient contextual information to be
used as a context prior. For example, a person opening the
trunk makes it very likely that he will also close the trunk.
Therefore, the pairwise potentials are learnt independently
for each pair of activities. We examine all activities within
a close spatio-temporal range of each other and model their
pairwise spatio-temporal relationships. This will account for
any occlusions/misses and false positives of activities. It also
gives us the flexibility to determine the structure of the graph
and the number of connections based on the test sequence.
The number of different functions to be evaluated is therefore,
N(N − 1) for a set of N activity categories. The parameters
for any two categories ci and cj can be learnt by maximizing

D =
∑
k

logψst(x
k
i , x

k
j ), (7)

where xki , xkj are the kth training example of categories i and
j.

D. Inference

Inference in a graphical model involves computing the
marginal probabilities of the hidden or unknown variables
given an evidence or an observed set of variables. We choose
the belief propagation method for estimation of parameters.
Since there are loops in our model, the loopy belief propa-
gation is used. Although this algorithm is not guaranteed to
converge, it has shown excellent empirical performance [24].

At each iteration, a node sends messages to its neighbor.
All nodes are updated based on the messages from their
neighbors. Consider a node xi ∈ V with a neighborhood
N(xi). The message sent by a node xi ∈ V to its neighbor
xj ∈ V, (xi, xj) ∈ E can be given as

mxi,xj (xj) = α

∫
xi

ψst(xi, xj)ψo(xi, yi)
∏

xk∈N(xi)

mxk,xi(xi)dxi

(8)
The marginal distribution of each activity region is given

by
p(xi) = αψo(xi, yi)

∏
xj∈N(xi)

mxj ,xi(xi) (9)

The activity label which has the highest marginal distribution
is assigned to the region.

E. Structure Improvisation

As mentioned before, since it is hard to predict the number
of activities in the scene in advance, rather than having a pre-
defined graphical structure or a pre-defined set of relationships,
we propose to construct the graphical model on the test se-
quence. Starting with an initial model, we suggest an iterative
approach to improve this structure in a way that might capture
the important relationships between nodes, thereby improving
the recognition scores. Entropy of a node xi is defined as
E(xi) = −

∑N
j=1 P (cj |xi) log2(P (cj |xi)), where P (cj |xi)

denotes the posterior probability of xi belonging to category
cj and N is the number of activity categories. We propose to
use the entropy of a node as a measure of the confidence
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Fig. 4. a) Figure shows three iterations of structure learning for a set of five
activities. The ground truth label of each node is marked in the figure. The
color of the nodes indicates whether the predicted label matches the true label
(green) or not (red). The change in structure is visible in the edges. We see
that, by choosing the edges which tend to decrease the entropy, we are more
likely to increase the recognition accuracy.b) A plot of accuracy vs entropy
for a video containing 24 activities. It can be seen that as entropy decreases,
recognition accuracy tends to increase. The graphs from a) are obtained in
the points marked in green.

of the system in labeling the node. This is based on the
intuition derived from [12] that when the system is confident of
classifying a node xi as belonging to a class ci, we can expect
P (ci|xj) to have a high value while P (ck|xi)∀k ̸= i to be
low, thereby lowering the entropy of the node. Therefore, we
wish to improve the structure of the graph in such a way that
the change lowers the overall entropy of the system. Although
there is no guarantee that this will always increase the accuracy
of the system, in most cases the confidence of the classifier is
reflective of the performance of the system.

The first step in the analysis of activities using an MRF
is to construct the graph. Ideally, we would want an edge to
connect an activity with one that triggers it and the one it
triggers. In practice, it is difficult to infer the causalities of
activities by just observing their spatial or temporal locations,
i.e., given that activity yi occurs before activity yj does not
imply that yi triggers yj . We make an assumption that two
activities can be related to each other only of they are within a
certain spatio-temporal distance of each other. However, since
there could be multiple people in the scene, there could be
several activities occurring close to each other. We propose a
greedy hill climbing method to construct the MRF as follows.

To begin with, we construct a graphical model where every
node is connected to two other nodes which have the least
spatio-temporal separation. In each iteration, we run loopy
belief propagation to estimate the marginal probabilities. We
randomly select an edge to add or delete, one at a time,
till a maximum entropy for the sequence is reached or the
maximum number of allowed iterations is reached. To add an
edge, we start with the nodes which have the least spatio-

Algorithm 1 Algorithm for labeling activities in a test sequence
using our context model

Input: SR = {V1 . . . VNR} Set of training videos containing
activity annotations

An activity sequence Y∫ containing n activities occurring
in close spatio-temporal vicinity {y1 . . . yn}.

Output: Labels of activities {x1 . . . xn}
Training: Train baseline classifiers c1 . . . cN for N activities and

model the spatio-temporal potential ψst(xi, xj) between
all pairs of activities using annotated training videos using
Eqn (6).

Testing:
1) Identify activity regions using the activity segmentation algorithm.
2) Compute observation potential ψo(xi, yi) for each activity segment

given by the baseline classifiers using Eqn (3).
3) Initialize graph G containing n observation variables representing

activity regions and n hidden variables representing the activity
labels.

4) Run inference to generate posteriors;
5) Compute sum of posterior entropy of all hidden nodes Eold.
6) while Eold > Ethresh||nedges < nmax do

Choose an edge randomly, add/delete edge;
Run inference;
Compute sum of posterior entropy of all hidden nodes Enew;
if Enew < Eold then

Incorporate change into the graph; Enew = Eold;
end if

7) end while
8) Compute labels from posteriors and output labels.

temporal distance, and remove edges between nodes which
are farther apart. We limit the edges of the graph using a
Gaussian prior [13]. We also fix the maximum connectivity
of a node so as to limit the number of loops in the graph.
Three iterations of structure learning for a sample sequence
of 5 activities is shown in Figure 4 a). Figure 4 b) shows the
accuracy of recognition of activities for a single video with
varying structures along with the corresponding entropy. The
sequence contains 24 activities, 5 of which form the activity
sequence which is illustrated in Figure 4 a). It can be seen
that in most cases, the decrease in entropy of the system has
resulted in an increase in recognition accuracy.

The overall algorithm of our approach is presented in
Algorithm 1.

F. Analysis of the Model

1) Symmetry: It should be noted that the order of activities
cannot be ignored here. For example, the probability of
the activity “approach the vehicle” followed by “enter
the vehicle” is not the same as the probability of the
activity “enter the vehicle” followed by “approach the
vehicle” (which implies that it is a different person who
is now approaching the vehicle). Therefore, the spatial
potential is not symmetric (ψs(xi, xj) ̸= ψs(xj , xi)). It
is to be observed that the spatio-temporal potential for
transition from ci to cj is learnt using examples from
the training data where ci occurs before cj , whereas
the spatio-temporal potential for transition from cj to ci
is learnt using the training examples where cj occurs
before ci. This takes care of the asymmetry in the
potentials.

2) Temporal proximity: The temporal proximity is a
measure of how far apart the two activities are in the
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chain of activities in the scene. This is modeled in the
temporal potential. The temporal potential takes care
of the fact that two activities taking place far apart in
the sequence is different from one activity taking place
soon after another. The association potential models
the frequency with which two activities occur with a
particular temporal proximity.

3) Spatial proximity: Similar to the temporal potential,
the spatial potential is an attempt to distinguish between
different persons performing two activities and the same
person performing the two activities.

III. EXPERIMENTS AND RESULTS

A. Dataset

The goal of our approach is to model activity context in con-
tinuous videos, therefore, we perform experimentation on long
duration realistic videos. Traditional datasets like Weizmann
[23] and KTH [25] cannot be used to validate our system.
Some other datasets like [26] contain long unsegmented video,
but these activities are not related to each other and the
sequence is not a realistic one. Therefore, we evaluate our
system on two challenging datasets containing long duration
activities: 1)The UCLA office dataset and 2)The publicly
available VIRAT ground dataset [27].

The UCLA office dataset [19] consists of indoor and
outdoor videos of single and two-person activities. Here, we
perform experiments on the lab scene containing close to 35
minutes of video captured with a single fixed camera in a
room. We work on 10 single person activities: Enter lab, exit
lab, sit down, stand up, work on laptop, work on paper, throw
trash, pour drink, pick phone receiver and place receiver down.
There is very little variation in viewpoint, occlusion and scale
here. The first half of the data is used for training and the
second half for testing. Each activity occurs 6 to 15 times in
the dataset.

The VIRAT dataset is a state-of-the-art activity dataset with
many challenging characteristics, such as wide variation in
the activities and a high amount of occlusion and clutter. It
consists of surveillance videos of 11 scenes with different
scales of resolution. These are parking lot videos involving
single vehicle activities, person and vehicle interactions, and
people interactions. There are also some group activities.
This dataset consists of scenes captured on a single camera
although the viewpoint can differ from one scene to the next.
In any scene, the activities can occur at different orientations
depending on the location. However, since these are wide-
area videos, persons of interest are usually far away from the
camera, the change in spatio-temporal distance with camera
view is considered negligible. We have used parking lot scenes
V IRAT S 0000, V IRAT S 0401 and V IRAT S 0502
for the first set of experiments and all data for the second
set. The length of the videos vary between 2−15 minutes and
containing up to 30 activities in a video. For every scene, the
first half is used for training and the second half for testing.

We perform two sets of experiments on the VIRAT dataset,
one on Release 1 and the other on Release 2 of the data.
For Release 1, there are 6 activities which are annotated:

Fig. 5. The figure shows the precision and recall obtained on the UCLA
office dataset and its comparison with the Bag-Of-Features baseline classifier
and SFG [9]. The activities are: 1 - enter room, 2 - exit room, 3 - sit down,
4 - stand up, 5 - work on laptop, 6 - work on paper, 7 - throw trash, 8 - pour
drink, 9 - pick phone, 10 - place phone down.

Fig. 6. The figure shows some examples of segmentation of activity regions.
The obtained segmentation is marked in green while the true segmentation is
marked in red.

Person entering vehicle, person exiting vehicle, person opening
trunk, person closing trunk, person loading vehicle and person
unloading vehicle. In release 2, additional 5 activities have
been added: person carrying an object, person gesturing,
person running, entering and exiting a facility. For release
1, we have provided comparison with the baseline Bag-of-
Words classifier as well as the state-of-the-art String of Feature
Graphs [9] method. For release 2, we show comparison with
the baseline Bag-of-Words classifier.

B. Pre-processing

To label meaningful activities in a long-duration wide area
video, the first step is to identify the spatio-temporal location
of activities. We call this step as “activity segmentation”.
The video is first divided into overlapping time windows of
fixed duration. Activity region computation is performed on
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Fig. 7. Figure shows the accuracy of our method with the VIRAT release 1
dataset for six activities and its comparison with the baseline approaches Bag-
of-Words and SFG [9] approach. The activities are: 1 - loading, 2 - unloading,
3 - open trunk, 4 - close trunk, 5 - enter vehicle, 6 - exit vehicle.

windows of three scales. Here each window consists of 30, 60
and 120 frames with an overlap of half the number of frames.
Feature points are computed for each time window which
contains a track and the time window is spatially clustered
into as many regions as the number of tracks in the window.
Here, we use the Space-Time Interest Points (STIP) [23] as
our features.

For each time window, the baseline classifiers are used to
assign a probability of the window belonging to a partic-
ular activity. All activities which do not correspond to the
set of “interesting” activities are considered as “background
activities”. We also train a baseline classifier for background
activities. For each set of overlapping windows, the window
which has achieved the highest probability is chosen as the
activity region. All regions which correspond to background
activities are eliminated. Recognition is carried out on the
remaining activity regions. An example of activity segments
identified in a sequence is shown in Figure 6.

A limitation of this approach is that, when the segmentation
algorithm fails to detect an activity segment, it is eliminated
from further processing, thereby missed detections are not
corrected.

C. Methodology

We used a randomly selected set of half the data for
training and the other half for testing. During the training, we
assume that the activity segmentation and the activity labels
are available to us. We normalize all distances with respect to
the scale of the video to make the approach invariant to scale.
A threshold was set on the spatio-temporal distance between
activities to determine if the relationship between them has
to be modeled. We used the distance threshold as a bounding
box of 4 times the average dimensions of the person in the
scene and a time threshold of 20 seconds. These values have
been fixed experimentally. The graphical model is constructed
on individual activity sequences. Classification over an entire
activity sequence is carried out using the proposed method. For
each activity region in the sequence, the baseline classifier is
applied to generate the observations. A graph is constructed
based on the spatio-temporal distances between activities.
Inference is carried out on the graph using the MRF parameters

Fig. 8. The Figure shows the confusion matrix on VIRAT release 1 data.
a)Result of applying the baseline classifier BOW to the data. b) Result of
applying BOW+context on the data. c) Result of SFG baseline classifier. d)
Result of SFG + context. The activities are: 1 - loading, 2 - unloading, 3 - open
trunk, 4 - close trunk, 5 - enter vehicle, 6 - exit vehicle. The corresponding
increase in recognition accuracy is evident from the graph.

Fig. 10. The figure shows the precision and recall obtained on the VIRAT
release 2 dataset and its comparison with the Bag-Of-Features and SFG
approaches. The activities are: 1 - person loading an object to a vehicle,
2 - person unloading an object from a vehicle, 3 - person opening a vehicle
trunk, 4 - person closing a vehicle trunk, 5 - person getting into a vehicle, 6
- person getting out of a vehicle; 7 - person gesturing, 8 - person running, 9
- carrying load, 10 - entering facility, 11 - exiting facility.

computed during training. Labels are assigned to each activity
region based on the posterior probabilities.

D. Analysis of the Results

1) UCLA office dataset: For the UCLA dataset, we con-
sider only single person activities in a high resolution video
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Fig. 9. The comparison of the prior probabilities which are the output of the baseline classifiers with the posterior probabilities which is the output of our
algorithm for a set of six activities. The output of our algorithm is seen to have a more well defined peak (less uncertainty) as compared to the baseline
classifier. For the last two, it is seen that the addition of context corrects an incorrect classification. The activities in order are: 1 - person loading an object
to a vehicle, 2 - person unloading an object from a vehicle, 3 - person opening a vehicle trunk, 4 - person closing a vehicle trunk, 5 - person getting into a
vehicle, 6 - person getting out of a vehicle

with little variation in viewpoint and occlusion. Although
this dataset has been used for experimentation in [19], the
events which have been classified for the lab data and the
accuracy of recognition for each event have not been provided
by the authors. Therefore, we provide comparison to the
baseline methods used here, which is the Bag-of-Words and
the SFG [9]. In both cases, it can be seen that the addition of
context improves performance. The Bag-of-Words classifier
gives an overall accuracy of 75.4%.For some activities, the
BOW classifier was able to identify all instances, therefore
no further improvement was possible. An overall accuracy of
86.7% was achieved with the addition of context. For the SFG
method, an overall accuracy of 62.3% was achieved while the
addition of context gave an accuracy of 77.9%. The values
of precision and recall for BOW and BOW+context, SFG and
SFG+context are shown in Figure 5.

2) VIRAT dataset: We compare our approach with two well
known approaches: the Bag-of-Words approach and the String
of Feature Graphs (SFG) approach which is a recent method
that provides state-of-the-art performance on multi-object data
in realistic videos. This method also models spatio-temporal
relations at the feature level.

For the VIRAT release 1 data, we demonstrate our method
using the BOW as well as SFG as baseline classifiers in Figure
7. We have also shown the results of the baseline classifiers for
comparison. We can see that our method performs better than
the SFG method in most cases. An overall accuracy of 40%
was obtained using BOW and 51.3% was obtained using the
SFG method. The usage of our method on BOW resulted in
an overall accuracy of 52.4% while the usage of our method
on SFG resulted in an accuracy of 61.5%. The accuracy of
recognition for activities “loading” and “unloading” was found
to be slightly lower than the rest since they involve similar
gestures. The confusion matrix for the 6 activities using BOW.
BOW+context, SFG and SFG + context is shown in Figure 8.

In Figure 9, we illustrate the difference between the output

of the baseline classifier and our algorithm for different
activities like enter vehicle, exit vehicle, open and close
trunk. It can be seen that the output of our algorithm has a
more well defined peak in probability, which in turn means
less uncertainty in prediction as compared to the baseline
classifier. This shows that the confidence of classification can
be increased with the use of context. In the last two cases,
the addition of context corrects an incorrect classification
(represented by the highest probability).

The second set of experiments was conducted on the release
2 of VIRAT dataset. This dataset contains five additional ac-
tivities - person carrying load, gesturing, running, entering and
exiting facility. These activities add some additional context
information to the data. We provide the precision-recall values
for each activity as well as the comparison with Bag-Of-
Features and SFG approaches in Figure 10. Here also, we
find that the addition of context helps in better recognition in
both cases. The overall accuracy of BOW+context was 52.6%
while BOW had an accuracy of 41.3%. The overall accuracy
of SFG was 37.8% while the overall accuracy of SFG+context
was 46.4%. It was seen that the activities “enter vehicle” and
“load vehicle” were often confused with each other in the
absence of context. But the use of context tells us that if a
person opens the trunk, he is likely to load it, whereas if the
person opens a door, he is likely to enter it. This contextual
information was captured by our model and brought about
a an improvement in the performance. It was seen that the
method shows an improvement over the baseline classifiers in
the case of partial occlusion as well as noise due to shadows
and clutter.

IV. CONCLUSION

In this paper, we have shown that the spatio-temporal
relationships between different activities in a scene can be
used as context in the recognition of activities. We illustrated
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a scheme based on graphical models used to learn the spatio-
temporal relationships from training video. We inferred the
most probable set of labels for the activities in the test video
given their spatio-temporal configurations and observation
potentials generated from weak classifiers.

In future, there are different directions in which this work
can evolve. We plan to create an integrated framework which
can identify interesting activity regions as well as recognize
them using contextual information. We also plan to extend
the method to be able to correct missed detections and false
positives using the contextual information available. It might
also be possible to model this contextual information using a
discriminative approach such as structural SVMs.
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