
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

“Shape Activity”: A Continuous State HMM for Moving/Deforming Shapes with
Application to Abnormal Activity Detection

Namrata Vaswani, Amit Roy Chowdhury, Rama Chellappa

Abstract— The aim is to model “activity” performed by a
group of moving and interacting objects (which can be people
or cars or different rigid components of the human body)
and use the models for abnormal activity detection. Previous
approaches to modeling group activity include co-occurrence
statistics (individual and joint histograms) and Dynamic Bayesian
Networks, neither of which is applicable when the number of
interacting objects is large. We treat the objects as point objects
(referred to as “landmarks”) and propose to model their chang-
ing configuration as a moving and deforming “shape” (using
Kendall’s shape theory for discrete landmarks). A continuous
state Hidden Markov Model (HMM) is defined for landmark
shape dynamics in an activity. The configuration of landmarks at
a given time forms the observation vector and the corresponding
shape and the scaled Euclidean motion parameters form the
hidden state vector. An abnormal activity is then defined as a
change in the shape activity model, which could be slow or drastic
and whose parameters are unknown. Results are shown on a real
abnormal activity detection problem involving multiple moving
objects.

I. I NTRODUCTION

In this paper, we develop models for the configuration
dynamics of a group of moving landmarks (point objects) in
shape space. Shape of a group of discrete points (known as
‘landmarks’) is defined by Kendall [1] as all the geometric
information that remains when location, scale and rotational
effects (referred to as “motion parameters” in this paper) are
filtered out. There has been a lot of work in learning the
statistics of a dataset of similar shapes and defining probability
distributions in shape and pre-shape space, [2] provides a good
overview. Statistical shape theory began in the late 1970s and
has evolved into viable statistical approaches for modeling the
shape of an object with applications in object recognition and
matching. In this work, we extend these static classification
approaches to defining dynamical models for landmark shape
deformation. Also, we consider here the shape formed by a
configuration of point objects instead of that of a single object.

For a dataset of similar shapes, the shape variability can
be modeled in the tangent hyperplane to the shape space at
the mean shape [2]. The tangent hyperplane is a linearized
version of the shape space linearized at a particular point
known as the pole of tangent projection. Typically one uses
the Procrustes mean [2] of the dataset as the pole. The tangent
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plane is a vector space and hence techniques from linear
multivariate statistics can be used to model shape variability
in tangent space. In this work, we model shape dynamics by
defining an autoregressive (AR) model in the tangent plane
at the mean shape. To model the configuration dynamics, we
also define motion models (models for translation, isotropic
scaling and rotation). We use the term“shape activity” to
denote a continuous state HMM (also referred to as a “partially
observed nonlinear dynamical model” or a “stochastic state
space model” in different contexts) for the shape deformation
and motion in the activity.

Previous approaches to modeling activity performed by
groups of point objects include co-occurrence statistics (e.g.
[3]) and discrete state Dynamic Bayesian Networks (DBNs)
(e.g. [4]). Co-occurrence statistics involves learning individual
and joint histograms of the objects. Joint histograms for
modeling interactions is feasible only when the number of
interacting objects is small. Our approach on the other hand
implicitly models interactions and independent motion of a
group of objects with any number of interacting objects.
DBNs define high level relations between different events and
typically use heuristics for event detection. Our algorithms
can be used to provide a more principled strategy for event
detection using DBNs. Another advantage of our framework
is that using shape and its dynamics makes the representation
invariant to translation, in-plane rotation or sensor zoom. The
idea of using “shape” to model activities performed by groups
of moving objects is similar to recent work in literature on
controlling formations of groups of robots using shape (e.g.
[5]).

One example of a stationary shape activity, that we discuss
in this paper, is that of people (treated as point objects)
deplaning and moving towards the terminal at an airport (See
figure 2(a)). Our framework can be used to model normal
activity and detect abnormal activity as a deviation from
the normalcy model. We are able to detect both spatial and
temporal abnormalities (terminology borrowed from [3]). The
“landmark” could also be a moving vehicle and one could
model traffic in a certain region as the normal activity and
define lane change as the “abnormality”. Our framework can
also be used to model the dynamics of articulated shapes like
the human body (the different rigid parts of the human body
forming the landmarks) and thus represent different actions
[6]. This has application in classifying or tracking a sequence
of actions and also in detecting motion disorders. Also, our
approach is sensor independent. The same framework could
be used for point location observations obtained from other
sensors, for e.g. infrared, acoustic, radar or seismic, and only
the observation model would change.
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A. Organization of the Paper

The paper is organized as follows: We discuss related work
in the next subsection. Some definitions and methods for shape
analysis are presented in Section II. The shape dynamics for
stationary shape activity and the training algorithm to learn
its parameters is described in Section III-A. The noise in
the observed configuration makes the state (shape, motion)
partially observed (or hidden). The partially observed model
is discussed in Section III-B. The non-stationary shape activity
model is given in Section III-C. The particle filtering algorithm
to estimate the hidden state from the observations is discussed
in Section III-D and its advantages are discussed in III-E. The
abnormality detection problem and its formulation as a change
detection problem is discussed in Section IV. The strategy
to deal with time-varying number of landmarks is given
in Section V. Experimental results on the airport terminal
abnormal activity detection problem are presented in Section
VI. Extensions of our framework to tracking observations and
to activity sequence identification and tracking are discussed
in Section VII. Conclusions are given in Section VIII.

B. Related Work

Shape Representations:Some of the commonly used
representations for shape are Fourier descriptors [7], splines
[8] and deformable snakes all of which model the shape of
continuous curves. But in our work we are attempting to model
the dynamics of a group of discrete landmarks (which could
be moving point objects or moving parts of an articulated
object like the human body). Since the data is inherently
finite dimensional, using infinite dimensional representations
of a continuous curve is not necessary and hence we look
only at the representation of shape in<n (modulo Euclidean
similarity transformations) which was first defined by Kendall
in 1977. Active Shape Models introduced by Cootes et al [9]
also consider the shape of points in<n. In [10], they define
‘Point Distribution Models’ which are principal component
models for shape variation using Procrustes residuals.

Modeling Shape Change:There has been a lot of work
in defining probability distributions in (Kendall’s) shape and
preshape space and also in analyzing datasets of similar shapes
in the tangent space at the mean (discussed in chapter 6, 7 and
11 of [2], and in [11], [12], [13] and references therein). Many
models for shape deformation of one shape into another have
been proposed which include affine deformation, thin plate
splines, and principal and partial warp deformations (discussed
in chapter 10 of [2]). But none of these define dynamical
models for time seqeunces of shapes. We propose in this paper,
a partially observed dynamical model (which also satisfies the
Hidden Markov Model property and hence we refer to it as
an HMM in the rest of the paper) for stationary and non-
stationary shape activities. Our model for non-stationary shape
activities is similar in spirit to those in [14] and [15] where the
authors define dynamical models for motion on Lie groups and
Grassmann manifolds, respectively, using piecewise geodesic
priors and track them using particle filtering.
Modeling Activity: There is a huge body of work in com-
puter vision on modeling and recognition of activities, human

actions and events. The work can be classified (based on the
formalisms used) as Bayesian networks (BNs) and Dynamic
Bayesian networks (DBNs) [16], [4]; finite state HMMs for
representing activity [17], [18] ; stochastic grammars [19]; and
factorization method based approaches [20], [21]. In [3], the
authors perform clustering to learn the co-occurrence statistics
of individual objects and their interactions with other objects.
[22] is another work which treats events as long spatio-
temporal objects and clusters them based on their behavioral
content. In [23], action “objects” are represented using gen-
eralized cylinders with time forming the cylinder axis. Now,
[3], [20], [21], [22], [23] are non-parametric approaches to
activity/event recognition, while HMMs, stochastic grammars,
BNs and DBNs are model based approaches. Our work also
defines a parametric model (but it is a continuous state HMM)
for activity performed by a group of objects and there are some
other differences. First, we treat objects as point objects and
hence we can get our observations from low resolution video
or even from other sensors like radar, acoustic or infra-red.
Second, we provide a single global framework for modeling
the interactions and independent motion of multiple moving
objects by treating them as a deformable shape.
Particle Filters and Change Detection:Particle filters [24]
have been used extensively in computer vision for tracking
a single moving object in conjunction with a measurement
algorithm to obtain observations [25], [26], [27]. In [28],
particle filtering is used to track multiple moving objects but
they use separate state vectors for each object and define
data association events to associate the state and observation
vectors. In our work, we represent the combined state of all
moving objects using the shape and global motion of their
configuration and define a dynamic model for both shape and
motion. We use a particle filter to filter out the shape from
noisy observations of the object locations and use the filtered
shape for abnormal activity detection. We define an abnormal
activity as a change which could be slow or drastic and whose
parameters are unknown. An algorithm for change detection
in nonlinear systems using particle filters is given in [29]. But
it assumes that the changed system’s parameters are known
and it deals only with sudden changes. In this paper we use a
statistic called ELL for detecting slow changes, with unknown
parameters [30], [31].

II. PRELIMINARIES AND NOTATION

We would first like to clarify that the terms partially
observed dynamical model and HMM are used interchange-
ably for “shape activity” models since the partially observed
dynamic model that we define is also an HMM. We use “arg”
to denote the angle of a complex scalar as well as in “arg min”
for the argument minimizing a function, but the meaning is
clear from the context.∗ is used to denote conjugate transpose.
||.|| is used for the Euclidean norm of a complex or real vector
and |.| for the absolute value of a complex scalar.Ik denotes
the k × k identity matrix and1k denotes ak dimensional
vector of ones. Also note that to simplify notation we do
not distinguish between a random process and its realization.
We review below the tools for statistical shape analysis as
described in [2].
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Definition 1: [2] The Configuration is an ordered set (k-
tuple) of landmarks (which in our case is thek-tuple of point
object locations). Theconfiguration matrix is ak×m matrix
of Cartesian coordinates of thek landmarks inm dimensions.
For 2D data (m = 2), a more compact representation is ak
dimensional complex vector with x and y coordinates forming
the real and imaginary parts. Theconfiguration spaceis the
space of allk-tuples of landmarks i.e.<km.

Translation Normalization: The complex vector of the
configuration (Yraw) can be centered by subtracting out the
centroid of the vector, thus yielding acentered configuration,
i.e.

Y = CYraw where C = Ik − 1k1k
T

k
. (1)

Definition 2: [2] The pre-shapeof a configuration matrix
(or complex vector),Yraw, is all the geometric information
about Yraw that is invariant under location and isotropic
scaling. Thepre-shape space, Sk

m, is the space of all possible
pre-shapes.Sk

m is a hyper-sphere of unit radius in<(k−1)m

and hence its dimension is(k− 1)m− 1 (a unit hyper-sphere
in <P has dimensionP − 1).

Scale Normalization: The pre-shape is obtained by nor-
malizing the centered configuration,Y , by its Euclidean norm,
s(Y ) = ||Y || (known asscale or sizeof the configuration),
i.e. w(Y ) = Y/s(Y ).

Definition 3: [2] The shape of a configuration matrix (or
complex vector),Yraw, is all the geometric information about
Yraw that is invariant under location, isotropic scaling and
rotation i.e. [z] = {sYrawR + 1kαT : s ∈ <+, R ∈
SO(m), α ∈ <m}. The shape spaceis the set of all possible
shapes. Formally, the shape space,Σk

m, is the orbit space of
the non-coincidentk point set configurations in<m under the
action of Euclidean similarity transformations. The dimension
of shape space isM = (k − 1)m − 1 − m(m − 1)/2. It is
easy to see thatΣk

m = Sk
m/SO(m), i.e. Σk

m is the quotient
space ofSk

m under the action of the special orthogonal group
of rotations,SO(m).

Rotation Normalization: Shape,z, is obtained from a
pre-shape,w, by rotating it in order to align it to a reference
pre-shapeγ. The optimal rotation angle is given byθ(Y, γ) =
arg(w∗γ) = arg(Y ∗γ), and the shape,z(Y, γ) = wejθ(Y,γ) =

Y
s(Y )e

jθ(Y,γ).
In this work we deal withm = 2 dimensional shapes

and hence the configuration vector is represented as ak
dimensional complex vector and the shape space dimension
is (2k − 4).

Distance between shapes:A concept of distance between
shapes is required to fully define the non-Euclidean shape
metric space. We use the Procrustes distance which is defined
below.

Definition 4: [2] The full Procrustes fit of w onto y is

wP (y)=β̂ejθ̂w + â + jb̂ where

β̂, θ̂, â, b̂=arg min
(β,θ,a,b)

D(y, w),

D(y, w)=||y − (βeiθw + a + jb)||.
If y and w are preshapes, it is easy to see that the matching
parameters are (result 3.1 of [2])

â + jb̂ = 0, θ̂ = arg(w∗y), β̂ = |w∗y| = (y∗ww∗y)1/2.

Definition 5: [2] The full Procrustes distance between
preshapesw and y is the Euclidean distance between the
Procrustes fit ofw onto y, i.e.

DF (w, y) = inf
β,θ,a,b

D(y, w) = ||y − wP (y)||

=
√

1− y∗ww∗y (2)
Definition 6: [2] The full Procrustes estimate of mean

shape(commonly referred to asfull Procrustes mean), of a
set of preshapes{wi} is the minimizer of the sum of squares
of full Procrustes distances from eachwi to an unknown unit
size mean configurationµ, i.e.

[µ̂] = arg min
µ:||µ||=1

n∑

i=1

min
βi,θi,ai,bi

D2(wi, µ)

= arg min
µ:||µ||=1

n∑

i=1

D2
F (wi, µ)

= arg min
µ:||µ||=1

n∑

i=1

(1− µ∗wiw
∗
i µ)

= arg max
µ:||µ||=1

µ∗[
n∑

i=1

wiw
∗
i ]µ (3)

i.e. [µ̂] is given by the set of complex eigenvectors correspond-

ing to the largest eigenvalue ofS
4
=

∑n
i=1 wiw

∗
i (Result 3.2

of [2]).
Shape Variability in Tangent to Shape Space:The structure
of shape variability of a dataset of similar shapes can be
studied in the tangent space to the shape space. We shall
consider the tangent projections to the preshape sphere after
normalizing for rotation (w.r.t. the pole), which form a suitable
tangent coordinate system for shape. The tangent space is a
linearized local approximation of shape space at a particular
point in shape space which is called the pole of tangent
projection. Thus Euclidean distance in tangent space is a good
approximation to Procrustes distance, for points in the vicinity
of the pole. See chapter 4 of [2] for more details.

Definition 7: [2] The Procrustes tangent coordinatesof a
centered configuration,Y , taking µ as the pole, are obtained
by projectingz(Y, µ) (the shape ofY aligned toµ) into the
tangent space atµ, i.e.

v(Y, µ) = [Ik − µµ∗]z(Y, µ) = [Ik − µµ∗]
Y

s(Y )
ejθ(Y,µ). (4)

The inverse of the above mapping (tangent space to centered
configuration space) is

Y (v, θ, s, µ) = [(1− v∗v)1/2µ + v]se−jθ. (5)

The shape space is a manifold inCk−1 and hence its dimension
is k−2. Thus the tangent space at any point of the shape space
is a k − 2 dimensional hyperplane inCk (or equivalently, a
(2k − 4)-dim hyperplane in<2k) [2].

III. M ODELING SHAPE DYNAMICS

The distinction between motion and deformation of a
deformable shape is not clear. We separate the dynamics
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of a deforming configuration into scaled Euclidean motion
(translation, rotation, uniform scaling) of the mean shape and
non-rigid deformations. This idea is similar to that suggested
in [32] for continuous curves. We define a continuous state
HMM for the changing configuration of a group of moving
landmarks (point objects) with the shape and scaled Euclidean
motion parameters being the hidden state variables and the
noisy configuration vector forming the observation. We refer
to it as a “shape activity”. A“stationary shape activity” is
defined as one for which the shape vector is stationary i.e. the
mean shape1 remains constant with time and the deformation
model is stationary while in a“non-stationary shape activity”,
the mean shape changes with time.

We discuss below the stationary and non-stationary shape
activity models and also the particle filtering algorithm to
estimate the shape from the noisy configuration observations.
The entire discussion assumes a fixed number of landmarks.
But in certain applications like the airport scenario with people
deplaning, the number of landmarks varies with time. We
deal with this by resampling the curve formed by joining the
landmarks to a fixed number of points. This is discussed in
Section V. Also, note that in this representation of the shape of
discrete landmarks, correspondences between landmarks are
assumed to be known across frames. Since the number of
landmarks is usually small (k = 8 in this case), this is easy
to ensure.

A. Stationary Shape Activity: Shape Deformation Model in
Tangent Space

A sequence of point configurations from a stationary shape
activity (SSA), with small system noise variance, would lie
close to each other and to their mean shape (see figure 1(a)).
Hence a single tangent space at the mean is a good approx-
imate linear space to learn the shape deformation dynamics
for a SSA. We represent a configuration of landmarks by a
complex vector with the x and y coordinates of a landmark
forming the real and imaginary parts2. We discuss the training
algorithm i.e. how to learn the shape dynamics given a single
training sequence of configurations. Given a sequence of
configurations with negligible observation noise,{Yraw,t}, we
learn its Procrustes mean and evaluate the tangent coordinates
of shape (using the Procrustes mean as the pole), as

Yt = CYraw,t,

st
4
= s(Yt) = ||Yt||, wt = Yt/st,

µ = arg max
µ:||µ||=1

µ∗[
T∑

t=1

wtw
∗
t ]µ

θt
4
= θ(Yt, µ) = arg(w∗t µ), zt = wte

jθt (6)

vt
4
= v(Yt, µ) = [Ik − µµ∗]zt = [Ik − µµ∗]

Yte
jθt

st
(7)

1In the entire paper, “mean shape” refers to the Expected Procrustes
estimate of mean shape

2Note that all transformations between the configuration space to shape
space and tangent to shape space are defined inCk (k-dim complex space) but
the dynamical model on tangent coordinates is defined in<2k by vectorizing
the complex vector. This is done only for compactness of representation. The
entire analysis could instead have been done in<2k.

Since the tangent coordinates are evaluated w.r.t. the mean
shape of the data, assuming that they have zero mean is a valid
assumption. We string the complex tangent vector components
as a 2k dimensional real vector and define a linear Gauss
Markov model on it to model the shape deformation dynamics.
Note that since we are assuming small variations about a mean
shape, a first order Gauss Markov model is sufficient to model
the shape dynamics in this case, i.e.

vt = Atvt−1 + nt

v0 ∼ N (0, Σv,0), nt ∼ N (0,Σn,t) (8)

where{nt} is i.i.d. Gaussian system noise. The deformation
process is assumed to be stationary and ergodic. Under this
assumption the above is a first order autoregressive (AR)
model. Thus,Σv,0 = Σv,t = Σv, Σn,t = Σn and At = A
is the autoregression matrix withA < I. Thus all the three
parameters can belearnt using a single training sequenceof
tangent coordinates,{vt}, as follows [33]

A = Rv(1)Σ−1
v where

Σv =
1
T

T∑
t=1

vtv
T
t and Rv(1) =

1
T − 1

T∑
t=2

vtv
T
t−1

Σn =
1
T

T∑
t=1

(vt −Avt−1)(vt −Avt−1)T (9)

and the joint pdf ofvt is given by

p(vt) = N (0,Σv), ∀t
p(vt|vt−1) = N (Avt−1,Σn), ∀t. (10)

Note that the asymptotically stationary case whereA < I but
Σv,0 6= Σv so thatΣv,t → Σv only for large time instants
(t → ∞), can also be dealt with in the above framework. In
that caseΣv,0 is defined using a-priori knowledge,Σn can be
learnt exactly as in (9), andΣv, Rv(1) can also be learnt as in
(9) but by excluding the summation over the initial (transient)
time instants.

B. Stationary Shape Activity: Partially Observed (Hidden)
Shape Dynamics

In the previous subsection we defined a dynamic model on
the shape of a configuration of moving points. We assumed
that the observation sequence used for learning the shape
dynamics has zero (negligible) observation noise associated
with it (e.g. if it were hand-picked). But a test sequence
of point configurations,{Yraw,t}, will usually be obtained
automatically using a measurement algorithm (e.g. a motion
detection algorithm [34]). It will thus have large observation
noise associated with it, i.e.Yraw,t = Y actual

raw,t + ζraw,t

where ζraw,t is zero mean i.i.d. Gaussian noise,ζraw,t ∼
N (0, Σobs,raw,t). If the different landmarks are far apart, the
noise can be assumed to be i.i.d. over the different landmarks
as well (i.e. whiteΣobs,raw,t). Now translation normalization
is a linear process and henceYt = CYraw,t is also Gaussian3

3Note that here we have assumed Gaussian observation noise,ζraw,t, but
in general a PF can track with any kind of noise. But for non-Gaussianζraw,t,
it is in general not possible to define a distribution forζt and one would have
to treat the translation as part of the state vector.
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with observation noise,ζt, given by

Σobs,t = CΣobs,raw,tC
T (11)

(C is the centering matrix defined in (1)). But the mapping
from centered configuration space to the tangent space is
nonlinear (scaling by||Yt|| followed by rotation to align with
mean) and hence it is not possible to obtain a closed form
expression for the pdf of the tangent coordinates given that
there is observation noise in the configuration vector. To deal
with this, one solution is to define a partially observed dynam-
ical model which can then be tracked using a particle filter
(PF) to estimate the distribution of the tangent coordinates
of shape given the noisy observations. The observed centered
configuration,Yt, forms the observation vector and the shape,
scale and rotation form the hidden state vector. We discuss
the PF in Section III-D and its advantage over an Extended
Kalman Filter in Section III-E.
Now, we have the followingobservation modelfor a “sta-
tionary shape activity” with the observation vectorYt being
the centered configuration vector and the state vectorXt =
[vt, st, θt]:

Yt = h(Xt) + ζt, ζt ∼ N (0, Σobs,t)
h(Xt) = ztste

−jθt , wherezt = (1− vt ∗ vt)1/2]µ + vt

(12)

Defining scale and rotation (motion parameters) as part of
the state vector implies that we need to define prior dynamic
models for them (motion model). Themotion modelcan be
defined based on either the motion of the shape if it is a
moving configuration or based on motion of the measurement
sensor if the sensor is moving (for e.g. a moving camera or
just an unstable camera undergoing a slight random motion) or
a combined effect of both. A camera on an unstable platform,
like an unmanned air vehicle (UAV), will have small random
x-y motion (translation), motion in z direction (scale change)
and rotation about the z axis (rotation angle change). The
translation gets removed when centeringYraw,t. The scale and
rotation can be modeled in this case by using an AR model
both for log of scale and for the unwrapped rotation angle4,
i.e.,

log st = αs log st−1 + (1− αs)µs + ns,t

log s0 ∼ N (µs, σ
2
s), ns,t ∼ N (0, σ2

r)
θt = αθθt−1 + (1− αθ)µθ + nθ,t

θ0 ∼ N (0, σ2
θ), nθ,t ∼ N (µθ, σ

2
θ) (13)

The motion model parameters can be learnt using the training
sequence values of{st}T

t=1 and{θt}T
t=1 given by (6).{θt}T

t=1

will have to be the unwrapped value of the rotation angle
to learn a Gaussian model. Also, one can either assume
wide sense stationarity, in which caseµs, σ

2
s , σ2

r , αs and
µθ, σ

2
θ , σ2

u, αθ can be learnt using Yule-Walker equations [33],
or assume a random walk motion model(setαs = 1 and
αθ = 1), depending on the application.

4Since we are modeling only random motion of a camera, a first order
linear Markov model for log of scale and rotation is sufficient in this case.

The shape deformation dynamics(equation (8) in Section
III-A) and the motion modeldefined above (equation (13))
form thesystem modelwhile equation (12) defines theobser-
vation model. Thus we have defineda continuous state HMM
(partially observed dynamic model)for a “stationary shape
activity”. The model is non-linear since the mappingh(Xt) is
nonlinear.

C. Non-Stationary Shape Dynamics

For a “non-stationary shape activity” model (details in [6]),
the mean shape is time-varying and hence modeling the shape
dynamics requires a time-varying tangent space (see figure
1(b)) defined with the current shape as the pole. Note that,
modulo reflections, there is a one to one mapping between
the tangent space at any point on the shape manifold and the
shape manifold. But the distance between two points on a
tangent plane is a good approximation to the distance on the
shape manifold only for points close to the pole of the tangent
plane. Hence the assumption of i.i.d. system noise to go from
shape att to shape att + 1 is valid only for shapes in the
vicinity of the pole. Thus when the shape variation is large
(for NSSA), there is a need to define a tangent space with the
current shape being the pole.

The state space now consists of the mean shape at timet,
zt, the “shape velocity coefficients” vector,ct, and the motion
parameters (scalest, rotationθt) i.e. stateXt = [zt, ct, st, θt].
Denote the tangent space atzt by Tzt . We then have the
following dynamics: The tangent coordinate ofzt in Tzt−1

(denoted byvt(zt, zt−1)) defines a“shape velocity” (time
derivative of shape) vector. We perform a Singular Value
Decomposition [33] of the tangent projection matrix,[Ik −
zt−1z

∗
t−1]C, to obtain an orthogonal basis for the(k−2)-dim

tangent hyperplaneTzt−1 . Denote the orthogonal basis matrix
for Tzt−1 by U(zt−1) 5. The(k−2)-dim vector of coefficients
along these basis directions, denoted byct(zt, zt−1), is a
coefficients vector for the “shape velocity”,vt, i.e. vt =
U(zt−1)ct. The shape att, zt is obtained by “moving”zt−1

on the shape manifold as follows: “Move” an amountvt (from
origin) in Tzt−1 and then project back onto shape space. This
is done as follows:zt = (1− v∗t vt)1/2zt−1 + vt.

We define a linear Gauss-Markov model on shape velocity
vt which corresponds to a linear Gauss Markov model forct.
We can then summarize the shape dynamics as follows:

ct = Ac,2,tct−1 + nt, nt ∼ N (0, Σn,c,2,t)
vt = U(zt−1)ct, U(zt−1) = orthogonal basis(Tzt−1)

zt = (1− v∗t vt)1/2zt−1 + vt. (14)

If we assume a time invariant AR model on{vt}, i.e. vt =
Av,2vt−1 + nv,t then we have a time varying Gauss-Markov

5The basis vectors,{ut,i}k−2
i=1 , are arranged as column vectors

of a matrix, U(zt−1), i.e. Ut
k×(k−2) = [ut,1, ut,2...ut,k−2].

U
k×(k−2)
t = orthogonal basis(Tzt−1 ) is evaluated as :Ut =

Ufull,tQ where Ufull,tSU∗full,t = [Ik − zt−1z∗t−1]C, andQ =

[I(k−2)×(k−2), 0(k−2)×2]T
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Let zt = [cos θ, sin θ]T ,

∆
c t+

1

Tzt

Tzt+1

∆ct+1 = |AB| is a scalar in<2

∆vt+1 = ∆ct+1[− sin θ, cos θ]T ,

θ

M

(a) Stationary Shape Activity (SSA) (b) Nonstationary Shape Activity (NSSA)

Fig. 1. SSA & NSSA on the shape manifold which is depicted using a circle (M), instead of a complexCk−1 sphere. In (a), we show a
sequence of shapes from a SSA; at all times the shapes are close to the mean shape and hence the dynamics can be approximated inTµ

(tangent space atµ). In (b), we show a sequence of shapes from an NSSA, the shapes move on the shape manifold and hence we need to
define a new tangent space at every time instant.

model onct with

Ac,2,t = U(zt−1)∗Av,2U(zt−2), and

Σn,c,2,t = U(zt−1)∗Σn,v,2U(zt−2). (15)

Note that a Markov model on the shape velocity corresponds to
a second order Markov model on shape,zt (hence the subscript
‘2’ on the parameters). Some special cases areAv,2 = 0 or
i.i.d. velocity (first order Markov model on shape);Av,2 =
I which corresponds to i.i.d. shape acceleration andAv,2 =
AAR or stationary shape velocity.

The motion model(model onst, θt) can be defined exactly
as in equation (13) but nowθt is the rotation angle of current
configuration w.r.t. the current mean shapeµt = zt−1 and
hence is a measure of rotation speed. As before, one can
assume the motion model to be stationary or non-stationary.
The shape and motion model, (14) and (13)), form thesystem
model. The observation modelis as follows:

Yt = h̃(Xt) + ζt, where h̃(Xt) = ztste
−jθt . (16)

1) Training: Given a training sequence of centered (trans-
lation normalized) configurations,{Yt}T

t=1, we first evaluate
{ct, vt, st, θt}T

t=1 as follows6 :

st = ||Yt||, wt = Yt/st,

θt(Yt, zt−1) = arg(w∗t zt−1), zt(Yt, zt−1) = wte
jθt ,

vt(Yt, zt−1) = [Ik − zt−1z
∗
t−1]zt,

ct(Yt, zt−1) = U(zt−1)
∗
zt. (17)

Assuming a time invariant AR model on shape velocity,vt,
one can learn its parameters (Av,2,Σn,v,2) as in (9) and then
define the time-varying Markov model forct using (15).

D. The Particle Filtering Algorithm

The problem of nonlinear filtering is to compute at each time
t, the conditional probability distribution, of the stateXt given
the observation sequenceY1:t = (Y1, Y2, ...Yt), πt(dx) =
Pr(Xt ∈ dx|Y1:t). Now if the system and observation models

6Note, the last equation,ct = Ut
∗zt, holds becausect = Ut

∗vt =
Ut
∗[I − zt−1z∗t−1]zt = Ut

∗[I − zt−1z∗t−1]Czt = Ut
∗UtUt

∗zt = Ut
∗zt.

are linear Gaussian, the posteriors would also be Gaussian
and can be evaluated in closed form using a Kalman filter.
For nonlinear or nonGaussian system or observation model,
except in very special cases, the filter is infinite dimensional.
Particle Filtering is a sequential Monte Carlo technique for
approximate nonlinear filtering which was first introduced in
[24] as Bayesian Bootstrap Filtering.

Let the initial state distribution be denoted byπ0(dx), the
state transition kernel byKt(xt, dxt+1) and the observation
likelihood given the state, bygt(Yt|xt). For the SSA model,
the stateXt = [vt, st, θt], the transition kernelKt is defined
by (8) and (13) andgt is defined by (12). For NSSA,
Xt = [µt, vt, st, θt] and Kt is given by (14) and (13). The
particle filter (PF) [24] is a recursive algorithm which produces
at each timet, a cloud of N particles, {x(i)

t }N
i=1, whose

empirical measure closely “follows”πt(dxt). It also produces
an approximation of the prediction distribution,πt|t−1(dx) =
Pr(Xt ∈ dx|Y1:t−1).

It starts with samplingN times from the initial state
distribution π0(dx) to approximate it by πN

0 (dx) =
1
N

∑N
i=1 δ

x
(i)
0

(dx) and thenimplements the Bayes’ recursion
at each time step. Now given that the distribution ofXt−1

given observations upto timet − 1 has been approximated
as πN

t−1(dx) = 1
N

∑N
i=1 δ

x
(i)
t−1

(dx), the prediction step sam-

ples the new statēx(i)
t from the distributionKt−1(x

(i)
t−1, .).

The empirical distribution of this new cloud of particles,
πN

t|t−1(dx) = 1
N

∑N
i=1 δ

x̄
(i)
t

(dx) is an approximation to the
conditional probability distribution ofXt given observations
upto time t − 1. For each particle, its weight is proportional
to the likelihood of the observation given that particle, i.e.

w
(i)
t = Ngt(Yt|x̄(i)

t )∑N

i=1
gt(Yt|x̄(i)

t )
. π̄N

t (dx) = 1
N

∑N
i=1 w

(i)
t δ

x̄
(i)
t

(dx) is

then an estimate of the probability distribution of the state at
time t given observations uptil timet. We sampleN times with
replacement fromπ̄N

t (dx) to obtain the empirical estimate
πN

t (dx) = 1
N

∑N
i=1 δ

x
(i)
t

(dx). Note that bothπ̄N
t and πN

t

approximateπt but the last step is used because it increases
the sampling efficiency by eliminating samples with very low
weights.
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E. Particle Filtering versus Extended Kalman Filtering

We discuss here the need for a PF and why it is better than
an extended Kalman filter. An Extended Kalman Filter (EKF)
[35] linearizes the non-linear system at each time instant
using Taylor series and runs a Kalman filter for the linearized
system. For the Taylor series approximation to be accurate, one
requires the initial guess (point about which you linearize) to
be close to the actual value at every time instant. Typically
linearization is done about the predicted state. This means
that one poorly estimated state will cause more error in the
linearization matrices for the next prediction and this error will
propagate (thus an EKF cannot recover once it loses track).
Loss of track can occur due to an outlier observation, modeling
error, large system noise or large linearization error. A PF on
the other hand is stable under mild assumptions [36], [37] and
hence it gets back in track more easily after losing track.

Also an EKF is unable to track non-Gaussian systems, in
particular systems with multi-modal priors or posteriors, while
a PF can. Multi-modal system models are required to model
a sequence of activities or multiple simultaneous activities.
Also in particle filtering, the number of particles,N , required
to achieve a certain performance guarantee on estimation error,
does not increase with increasing dimension of the state space
[25], it depends only on the total randomness in the system.
So for a system which is more random (larger system noise or
observation noise), the PF performance can be improved by
increasingN .

IV. A BNORMAL ACTIVITY DETECTION

An abnormal activity (suspicious behavior in our case) is
defined as a change in the system model, which could be
slow or drastic, and whose parameters are unknown.Given
a test sequence of observations and a “shape activity” model,
we use the change detection strategy discussed in [30], [6]
to detect a change (observations stop following the given
shape activity model). The cases of negligible observation
noise (Fully Observed) and non-negligible observation noise
(Partially observed) are discussed separately. We consider only
stationary shape activities in this work.

A. Fully Observed Case

The system is said to be fully observed when the function
h(.) is invertible and the observation noise is zero (negligible
compared to the system noise,nt). For such a test sequence,
the shape dynamics of Section III-A fully defines the “shape
activity model”. We can evaluate the tangent coordinates of
shape (vt) directly from the observations using (7). We use
log-likelihood to test for abnormality. A given test sequence
is said to be generated by anormal activity iff the probability
of occurrence of its tangent coordinates using the pdf defined
by (10) is large (greater than a certain threshold). Thus the
distance to activity statistic for an ‘L + 1’ length observation
sequence ending at timet, dL+1(t), is the negative log
likelihood of the sequence of tangent coordinates of the shape
of the observations (first used by us in [38]). We can test for
abnormality at any timet by evaluatingdL+1(t) for the past

L + 1 frames.dL+1(t) is defined as follows: (K is a constant
defined in equation (19))

dL+1(t) = −2 log p(vt−L, vt−L+1, ...vt)
= vT

t−LΣ−1
v vt−L

+
t∑

τ=t−L+1

(vτ −Avτ−1)T Σ−1
n (vτ −Avτ−1)

(18)

Note here that,Σv is always rank deficient since{vt} lie in a
(2k−4)-dim hyperplane of<2k and hence the inverse defined
above actually represents the pseudo-inverse.

B. Partially Observed Case

In a partially observed system, the observation noise in the
configuration landmarks’ measurements is non-negligible and
it is defined by the observation model discussed in Section
III-B. The PF is used to estimate the posterior distribution
of shape at timet given observations uptot − 1 (prediction)
and uptot (filtering). We use the change detection strategy
described in [30], [6].

1) If the abnormality is a drastic one it will cause the PF,
with N large enough to accurately track only normal
activities, to lose track. This is because under the normal
activity model (equations (8) and (13)), the abnormal
activity observations (which do not follow this model)
would appear to have a very large observation noise.
Thus the tracking error will increase for an abnormal
activity (very quickly for a drastic one) and this can be
used to detect it. Thetracking error (TE)or prediction
error is the distance between the current observation and
its prediction based on past observations, i.e.

TE
4
= ||Yt − Ŷt||2 = ||Yt − E[Yt|Y0:t−1]||2

= ||Yt − Eπt|t−1 [h(Xt)]||2

Also, instead of tracking error, observation likelihood
(OL) can also be used and as discussed in chapter 2 of
[6], OL ≈ TE for white Gaussian noise.

2) For the case when the abnormality is a slow change (say
a person walking away slowly in a wrong direction), the
PF does not lose track very quickly (the tracking error
increases slowly) or if it is a short duration change it
may not lose track at all. The tracking error will thus
take longer to detect the change or it may not detect it at
all. For such a case, we use theExpected (negative) Log
Likelihood (ELL) [31], [30], ELL = Eπt [−logp(vt)].
Note that the ELL is a posterior expectation of the right
hand side of (18) withL = 0. In general, one could use
a sequence of past shapes (L > 0) in this case as well.
The expression forELL is approximated byELLN as
follows

ELLN 4
= EπN

t
[−logp(vt)] =

1
N

N∑

i=1

v
(i)
t

T
Σ−1

v v
(i)
t + K,

where K
4
= − log

√
(2π)2k−4|Σv|
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Now since the PF loses track slowly, the estimated
posteriorπc,0,N

t remains a good approximation of the
true posteriorπc,c

t for a long time. But a slowly changing
shape introduces a systematically increasing bias in the
tangent coordinates of shape (they no longer remain zero
mean) and hence ELL would increase. These intuitive
idea is analyzed rigorously in [6], [39].

Thus to detect any kind of abnormality (slow or drastic)
without knowing its rate of change, we use a combination of
ELL and tracking error. We declare a sequence of observations
to be abnormal when either ELL or tracking error exceeds its
corresponding threshold.

V. T IME-VARYING NUMBER OF LANDMARKS

All the analysis until now assumes that a configuration
of points is represented as an element of<2k wherek is a
fixed number of landmarks. Now we consider what happens
when the number of landmarks (here the point objects) is
time-varying even though the curve formed by joining their
locations remains similar. For example, a group of people
(or also a group of vehicles) moving on a certain path with
fixed initial and final points but number of people on the
path decreases by one when a person leaves and increases
by one when someone enters. In such a case, we linearly
interpolate the curve by joining the landmark points in a
predefined order and then re-sample the interpolated curve to
get a fixed number of landmarks. The interpolation depends on
the parametrization of the curve, which is an ill-posed problem
when the data is inherently discrete. We have attempted to use
two different schemes which exist in the literature - “arc-length
re-sampling” (also known as “equidistant sampling”) and “uni-
form re-sampling” which use two different parameterizations.

In “arc-length resampling” , one looks at the curve formed
by joining the landmarks in a predefined order, and parameter-
izes the x and y coordinates by the length,l, of the curve, upto
that landmark. Let[xt(l), yt(l)] be one-dimensional functions
of the curve length and seen this way the discrete landmarks
xt,j = xt(lj), yt,j = yt(lj), j = 0, 1, ..kt − 1 are non-
uniformly sampled points from the function[xt(l), yt(l)] with
l0 = 0, l2j = l2j−1 + (xt,j − xt,j−1)2 + (yt,j − yt,j−1)2. We
linearly interpolate using these discrete points to estimate the
function [x̂t(l), ŷt(l)] and then re-sample it uniformly at points
l̃j = (j − 1)L/k, j = 0, 1, ..k − 1 (L is the total length,
L2 =

∑
j l2j ) to get a fixed number,k, of uniformly spaced

landmarks. Thus, for every configuration ofkt landmarks,
we get a new configuration of uniformly sampled (and hence
uniformly spaced)k landmarks. The linear interpolation and
resampling stages can be approximated as a linear transfor-
mation,Bt (a kt × k matrix), applied to the original points.
The covariance of observation noise in the re-sampled points
becomesΣk

obs,t = BtΣkt

obs,tB
T
t = BtC

ktΣkt

obs,raw,tC
kt

T
BT

t .
“Uniform resampling” , on the other hand, assumes that the

observed points are uniformly sampled from some process,
[xt(s), yt(s)], i.e. it assumes that the observed points are
parameterized asxt,j = xt(sj), yt,j = yt(sj) with sj =
(j − 1)/kt. We linearly interpolate to estimate[x̂t(s), ŷt(s)]
and re-sample it uniformly at points̃sj = (j − 1)/k, to

get a fixed number of landmarks,k. Assuming the observed
points to be uniformly sampled makes this scheme very
sensitive to the changing number of landmarks. Whenever
the number of landmarks changes, there is a large change
in the re-sampled points’ configuration. This leads to more
false alarms while performing abnormal activity detection.
But unlike “arc-length resampling”, this scheme gives equal
importance to all observed points irrespective of the distance
between consecutive points and so is more quick to detect
abnormalities in shape caused even by two closely spaced
points. We discuss an example in Section VI-D.

VI. EXPERIMENTAL AND SIMULATION RESULTS

A. Dataset and Experiments

We have used a video sequence of passengers deplaning
and walking towards the airport terminal as an example of a
“stationary shape activity”. The number of people in the scene
varies with time. We have resampled the curve formed by join-
ing their locations using “arc-length resampling” (described in
Section V) in all experiments except the temporal abnormality
[3] detection where we use “uniform resampling”. As we
needed observation noise-free data to learn the system model,
we used hand-marked passenger locations for training. The
mean shape,µ, and the tangent space Gauss Markov model pa-
rameters,A,Σv,Σn, were learnt using this data (as discussed
in Section III-A). Also the motion model parameters (which in
this case model random motion of the camera) were estimated
with this data. Simulated test sequences were produced by
adding observation noise to the hand-marked data. We did this
to study robustness of the method to increasing observation
noise. We also tested with real observations obtained using
a motion detection algorithm [34]. Both real and simulated
observation sequences were tracked using the PF described in
Section III-D with the number of particles,N = 1000.

This video was provided to us by the Transport Security
Administration (TSA) and did not have any instances of abnor-
mal behavior. Abnormal behavior was simulated in software by
making one of the persons walk away in an abnormal direction
(in the results shown one person was made to walk away at
an angle of45o to the X-axis, see figure 2(b); 2(a) shows
a normal activity frame). Now, the person could be moving
away at any speed which will make the abnormality a slow
or a drastic change. We have simulated this by testing for
walk away speeds of1, 2, 4, 16, 32 pixels per time step in both
x and y directions. The average speed of any person in the
normal sequence is about1 pixel per time step. Thus walk-
away velocity of1 pixel per time step, denoted asvel. = 1,
corresponds to a slow change which does not go out of track
for a long time whilevel. = 32 is a drastic change that causes
the PF to lose track immediately.

We show change detection results and tracks using real ob-
servations of the passengers’ locations in each frame obtained
using a motion detection algorithm described in [34]. The
ability of our algorithm to deal with temporal abnormalities
[3] is demonstrated as well. We also plot the ROC curves for
change detection using the ELL, the tracking error (TE) and
a combination of both.
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(a) A ‘normal activity’ frame with 4 people (b)Abnormality introduced by making one
person walk-away in an abnormal direction

Fig. 2. Airport example: Passengers deplaning
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Fig. 3. ELL and Tracking error (TE) plots: Simulated Observation noise,σ2
obs = 9 (3-pixel noise).
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Fig. 4. ELL and Tracking error plots: Real Observations. Abnormality was introduced att = 5. The ELL is able to detect slow changes
better while the tracking error works better for drastic changes. The plots are discussed in Section VI-B.

B. ELL versus Tracking Error: Slow and Drastic Changes

Figure 3 shows ELL and tracking error plots for simu-
lated observation noise and figure 4 shows the plots for real
observations. Real observations are obtained using a motion
detector [34]. Observation noise is because of the sensor noise
and motion detection error. Now, figure 9(b) shows a slow

abnormality (vel.=1) introduced att = 5 which is tracked
correctly for a long time (tracking error plot is shown in figure
4(b)) and hence we need to use ELL to detect it (ELL plot is
shown in figure 4(a)). Figure 9(c) shows a drastic abnormality
(vel. = 32) which was also introduced att = 5 but loses
track immediately. In this case the abnormal observations are
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(a) Slow change (vel.=1):WORKS (b) Drastic change (vel.=32): FAILS

Fig. 5. ROCs for Change detection using ELL. Blue circles, red stars, majenta triangles and cyan diamonds plots are forσ2
obs = 3, 9, 27, 81

respectively. Note that the two plots have different y axis ranges. The ELL completely fails for drastic changes. Detection delays in (b) are
very large (60 time units) while for the slow change maximum detection delay is only 7 time units. Plots are discussed in Section VI-C.
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Fig. 6. ROCs for Change detection using Tracking error. Blue circles, red stars, majenta triangles and cyan diamonds plots are forσ2
obs =

3, 9, 27, 81 respectively. Please note that the two plots have different y axis ranges. Tracking error does not detect slow changes easily.
Detection delays in (a) are large (maximum delay is 28 time units) while drastic changes are detected almost immediately with delay≤ 4
time units. Plots are discussed in Section VI-C.

ignored and the PF continues to follow the system model.
As a result, the ELL (plot shown in figure 4(a)) confuses it
for a normal sequence and fails completely, while tracking
error (plot shown in figure 4(b)) detects it immediately. In
figure 4(a), we show the ELL plot for increasing rates of
change. Withvel. = 1, the abnormality (introduced att = 5)
gets detected att = 27 and with vel. = 4 it gets detected
at t = 12. For vel. = 32, the ELL is unable to detect
the abnormality. The tracking error (figure 4(b)) detects this
abnormality immediately (att = 6) while it misses detecting
the slow abnormality (vel. = 1).

This demonstrates the need to use a combination of ELL and
tracking error to detect both slow and drastic changes (since
the aim is to be able to detect any kind of abnormality with
rate of change not known). As explained earlier, we declare an
abnormality if either the ELL or the tracking error exceeds its
corresponding thresholds. The ROC curves for this combined

ELL/TE strategy are shown in Figure 7. As is discussed below,
by combining ELL and TE we are able to detect all slow and
drastic changes with detection delay less than 7 time units.

C. ROC curves and Performance Degradation with increasing
Observation Noise

The intuition discussed above is captured numerically in
the ROC (Receiver Operating Characteristic) curves [33],
[40] for change detection using ELL (figure 5(a) and (b)
for slow and drastic changes respectively), using tracking
error (figure 6(a) and (b)) and using a combination of both
(figure 7(a),(b),(c),(d)). Please note that every figure in the
ROC plot has a different y axis range. The blue circles, red
stars, magenta triangles and cyan diamonds are the ROC plots
for simulated observation noise with increasing variances of
3, 9, 27, 81 square pixels. The ROC for a change detection
problem [40] plots the average detection delay against the
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Fig. 7. ROCs for Change detection using the combined ELL-Tracking error. In this case, for each observation noise variance, there are
multiple curves, since one needs to vary thresholds for both ELL and tracking error to get the ROC. A single curve is for the ELL threshold
fixed and tracking error threshold varying. We have a set of curves for varying ELL thresholds. The maximum detection delay is 2 and 3
time units forσ2

obs = 3 ((a) and (b)), and 7 and 4 time units forσ2
obs = 81 ((c) and (d)). Plots are discussed in Section VI-C.

Fig. 8. ELL plot for Temporal abnormality detection. Abnormality was introduced att = 5. The plot is discussed in Section VI-D.

mean time between false alarms by varying the detection
threshold. The aim of an ROC plot is to choose anoperating
point threshold which minimizes detection delay for a given
value of mean time between false alarms.

For the slow change (vel. = 1), the detection delay is
much lesser using ELL than using the tracking error while the
opposite is true for the drastic change (vel. = 32). The detec-

tion performance degradation of ELL for slow change and of
tracking error for drastic change with increasing observation
noise is slow. In figure 5(a) (ELL for slow change), detection
delay is less than or equal to 2 time units forσ2

obs = 3 and
7 time units forσ2

obs = 81. In figure 6(b) (tracking error for
drastic change), the detection delay is less than or equal to
3 time units forσ2

obs = 3 and 4 time units forσ2
obs = 81.
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Fig. 9. Tracks: Real Observations. Plotting the observed and tracked positions of the landmarks (passengers) on the x-y plane. The plots
are discussed in Section VI-E.

Since the aim is to be able to detect all kinds of abnormalities
(abnormality parameters are assumed not known), we propose
to use a combination of the ELL and the tracking error and
declare a change when either exceeds its threshold. In figure 7,
we plot the ROC curves for slow and drastic change detection
using a combination of ELL and tracking error. In this case,
for each observation noise variance, there are multiple curves,
since one needs to vary thresholds for both the ELL and the
tracking error to get the ROC. A single curve is for the ELL
threshold fixed and tracking error threshold varying. We have
a set of curves for varying ELL thresholds. We plot the low
and high observation noise cases in two separate plots. As can
be seen, the combined strategy has better performance than
either ELL or tracking error for all rates of change and for all
observation noises (detection delay less than 7 time units in
all cases).

D. Temporal abnormality [3] detection

We also tested our method for detecting what is referred
to in [3] as a temporal abnormality (one person stopped in
his or her normal path). It gets detected in this framework
because there is a change in shape when the person behind the
stopped person goes ahead of him (curve becomes concave).
We used “uniform resampling” (discussed in Section V) which
detected temporal abnormality easily using ELL (figure 8).
“Arc-length resampling” does not work too well in this case.
This is because it tends to average out the locations of two
closely spaced points, thus smoothing out the concavity which
needs to be detected. “Uniform resampling”, on the other hand,
assumes the observed points are uniformly sampled and hence
gives equal weight to all the observed points irrespective of
the distances between them. Thus it is able to detect concavity
caused even by two closely spaced points. Another way to
detect temporal abnormality would be to use a NSSA model
and look at deviations from the expected value of shape
velocity.

E. Tracks

Figure 9(a) shows a normal observation frame (circles)
and the corresponding tracked configuration (stars), for real

observations obtained using a motion detector [34] on the
image sequences. The observation noise was modeled to be
Gaussian (although the PF can filter non-Gaussian noise as
well) and its covariance was learnt from a training sequence
of observations obtained using the motion detector. This shows
the ability of our model to potentially be used for “tracking to
obtain observations”. Figures 9(b),(c) show tracking of a slow
(vel = 1) and drastic (vel = 32) abnormality both introduced
at t = 5. As can be seen, the drastic abnormality has lost track
at t = 7 while the slow one is not totally out of track even at
t = 13. The NSSA model tracks abnormality better [6]. Note
that since we use only a point object abstraction for moving
objects (here persons), we show observed and tracked point
object locations only without showing the actual images.

VII. E XTENSIONS

A. Tracking to Obtain Observations

In the entire discussion till now, we used a PF in the
filtering mode to estimate the probability distribution of shape
from noisy observations and used this distribution for ab-
normality detection. But the PF also provides at each time
instant the prediction distribution,πt(Xt|Y1:t−1), which can
be used to predict the expected configuration at the next time

instant using past observations, i.e.Ŷt
4
= E[Yt|Y0:t−1] =

Eπt|t−1 [h(Xt)]. We can use this information to improve the
measurement algorithm used for obtaining the observations (a
motion detector [34] in our case). Its computational complexity
can be reduced and its ability to ignore outliers can be
improved by using the predicted configuration and searching
only locally around it for the current observation7. As we
show in Section VI-E, the observed configuration is close to its
prediction when there is no abnormality or change and hence
the prediction can be used to obtain the observation. An SSA
model can track a normal activity while the NSSA is able to
track abnormality as well (shown in [6]).

7One thing to note here is that in certain cases (for example, if the posterior
of any state variable is multimodal), evaluating the posterior expectation as a
prediction of the current observation is not the correct thing to do. In such a
case, one can track the observations using the CONDENSATION algorithm
[26] which searches for the current observation around each of the possible
h(x̄i

t), i = 1, 2...N .



IEEE TRANSACTIONS ON IMAGE PROCESSING 13

If used in this “tracking observations and filtering” frame-
work, a lot of drastic abnormalities can be detected at the mea-
surement stage itself because no observations will be found
in the “vicinity” (region of search defined using observation
noise variance) of the predicted position. But an outlier might
get confused with a drastic abnormality since even for an
outlier we will not find any observation in the “vicinity”. The
difference is that outliers would be temporary (one or two
time instants and then the PF comes back in track), while a
drastic abnormality will appear to be an outlier for a sequence
of frames. Thus by averaging the number of detects over a
sequence of past time instants, we can separate outliers from
real abnormalities.

Also, if the configuration is a moving one, then the predicted
motion information can be used to translate, zoom or rotate
the camera (or any other sensor) to better capture the scene
but in this case, one would have to alter the motion model to
include a control input.

B. Activity Sequence Identification and Tracking

Consider two possible situations for tracking a sequence
of activities. Assume each activity is represented by an SSA
so that the sequence of activities is characterized by a PSSA
(discussed in [6]). The mean shape of each SSA component
is known but the transition times are assumed unknown.

1) First consider the simple case when there are just
two possible activities and their order of occurrence is
known, only the change time is unknown. In this case,
one can detect the change using ELL (before the particle
filter loses track) and then start tracking it with the
second activity’s transition model.

2) Now consider the general case when a sequence of
activities occur, and we do not know the order in
which they occur. In this case, we can use a discrete
mode variable as part of the state vector to denote
each activity type. We make the state transition model
a mixture distribution and keep the mode variable as
a state. Whenever a change occurs, it takes the mode
variable a few time instants to stabilize to the correct
mode. One could replace the multimodal dynamics with
that of the detected mode once the mode variable has
stabilized. Also, in this case we can declare an activity
to be abnormal (i.e. neither of the known activity types)
if the ELL w.r.t all known models exceeds a threshold.

VIII. C ONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have presented a “shape activity model”,
which is a continuous state Hidden Markov Model for the
changing configuration of a set of moving landmarks. The
shape and global motion parameters constitute the hidden
state vector and the observed landmark locations form the
observation vector. The state dynamics and the mapping be-
tween the state and the observation is nonlinear and hence the
shape is estimated from the noisy observations using a particle
filter. Abnormal activity detection is formulated as a change
detection problem with change parameters being unknown and
change being slow or drastic. We have used a change detection

strategy using particle filters which has been proposed and
analyzed by us in past work [30], [31], [41]. Experimental
results have been shown for abnormal activity detection in an
airport scenario.

As part of future work, we hope to implement joint tracking
and abnormality detection and tracking a sequence of activities
(discussed in Section VII). Also, in this work, we have experi-
mented only with stationary shape activities. We are currently
studying the non-stationary case (discussed in Section III-C)
in more detail. We hope to characterize (define a pdf for)
specific instances of a normal activity in the non-stationary
case and to define the abnormality detection problem. The
non-stationary shape activity model provides the flexibility to
model and track a much larger class of group activities. We are
also experimenting with a piecewise stationary shape activity
model which can be used along with ELL for activity sequence
segmentation and tracking.

The issue of time-varying number of landmarks needs to
be studied more rigorously by first defining the optimality
criterion to make the interpolation problem well-posed and
then deciding the best strategy. Also, the current shape space
(<km modulo Euclidean similarity transformations) can be
replaced by general shape spaces, for example, the affine shape
space (chapter 12 of [2]) would be useful to make the activity
invariant to an affine camera’s motion. Finally, we plan to
apply our framework to many other applications (discussed in
the introduction).
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