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“Shape Activity”: A Continuous State HMM for Moving/Deforming Shapes with
Application to Abnormal Activity Detection
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Abstract—The aim is to model “activity” performed by a plane is a vector space and hence techniques from linear
group of moving and interacting objects (which can be people multivariate statistics can be used to model shape variability
or cars or different rigid components of the human body) ;, tangent space. In this work, we model shape dynamics by

and use the models for abnormal activity detection. Previous defini t . AR del in the t t l
approaches to modeling group activity include co-occurrence efining an autoregressive (AR) model in the tangent plane

statistics (individual and joint histograms) and Dynamic Bayesian at the mean shape. To model the configuration dynamics, we
Networks, neither of which is applicable when the number of also define motion models (models for translation, isotropic
interacting objects is large. We treat the objects as point objects scaling and rotation). We use the tefishape activity” to
(referred to as “landmarks”) and propose to model their chang-  gangte g continuous state HMM (also referred to as a “partially
ing configuration as a moving and deforming “shape” (using . - " u .
Kendall's shape theory for discrete landmarks). A continuous observed nonlllnea.lr dynamical model” or a “stochastic Stf"‘te
state Hidden Markov Model (HMM) is defined for landmark  Space model” in different contexts) for the shape deformation

shape dynamics in an activity. The configuration of landmarks at and motion in the activity.

a given time forms the observation vector and the corresponding . ) .

shape and the scaled Euclidean motion parameters form the Previous approaches to modeling activity performed by
hidden state vector. An abnormal activity is then defined as a groups of point objects include co-occurrence statistics (e.g.

change in the shape activity model, which could be slow or drastic [3]) and discrete state Dynamic Bayesian Networks (DBNs)
and whose parameters are unknown. Results are shown on a real g ¢ [4]). Co-occurrence statistics involves learning individual
abnormal activity detection problem involving multiple moving C . . . .
objects. and Jq|nt _hlstograms _of the_objects. Joint histograms for
modeling interactions is feasible only when the number of
interacting objects is small. Our approach on the other hand
I. INTRODUCTION implicitly models interactions and independent motion of a
In this paper, we develop models for the configuratiosiroup of objects with any number of interacting objects.
dynamics of a group of moving landmarks (point objects) iRBNs define high level relations between different events and
shape space. Shape of a group of discrete points (knowntgically use heuristics for event detection. Our algorithms
‘landmarks’) is defined by Kendall [1] as all the geometri€an be used to provide a more principled strategy for event
information that remains when location, scale and rotationdgtection using DBNs. Another advantage of our framework
effects (referred to as “motion parameters” in this paper) ai&that using shape and its dynamics makes the representation
filtered out. There has been a lot of work in learning thi@variant to translation, in-plane rotation or sensor zoom. The
statistics of a dataset of similar shapes and defining probabiliéga of using “shape” to model activities performed by groups
distributions in shape and pre-shape space, [2] provides a g&bdnoving objects is similar to recent work in literature on
overview. Statistical shape theory began in the late 1970s @ntrolling formations of groups of robots using shape (e.g.
has evolved into viable statistical approaches for modeling tHd)-

shape of an object with applications in object recognition and 5,4 example of a stationary shape activity, that we discuss

matching. In this yvqu, we exFend these static classificatio thig paper, is that of people (treated as point objects)
approaches to defining dynamical models for landmark shag@g,|aning and moving towards the terminal at an airport (See
deformation. Also, we consider here the shape formed bysgre 2(a)). Our framework can be used to model normal
configuration of point objects instead of that of a single objeClyyity and detect abnormal activity as a deviation from
For a dataset of similar shapes, the shape variability Cgf), normalcy model. We are able to detect both spatial and
be modeled in the tangent hyperplane to the shape spacg.ahnoral abnormalities (terminology borrowed from [3]). The
the mean shape [2]. The tangent hyperplane is a linearizeghymark could also be a moving vehicle and one could
version of the shape space linearized at a particular Pojjhqe| traffic in a certain region as the normal activity and
known as the pole of tangent projection. Typically One USeffine |ane change as the “abnormality”. Our framework can
the Procrustes mean [2] of the dataset as the pole. The tanggal, he ysed to model the dynamics of articulated shapes like
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A. Organization of the Paper actions and events. The work can be classified (based on the

The paper is organized as follows: We discuss related wdffmalisms used) as Bayesian networks (BNs) and Dynamic
in the next subsection. Some definitions and methods for sh&yesian networks (DBNs) [16], [4]; finite state HMMs for
analysis are presented in Section II. The shape dynamics fePresenting activity [17], [18] ; stochastic grammars [19]; and
stationary shape activity and the training algorithm to leafictorization method based approaches [20], [21]. In [3], the
its parameters is described in Section Ill-A. The noise @uthors perform clustering to learn the co-occurrence statistics
the observed configuration makes the state (shape, motigﬁ'nd_ividual objects and their interactions with other objec';s.
partially observed (or hidden). The partially observed modE?] i another work which treats events as long spatio-
is discussed in Section 11I-B. The non-stationary shape activigmPoral objects and clusters them based on their behavioral
model is given in Section I1I-C. The particle filtering algorithmFontent. In [23], action “objects” are represented using gen-
to estimate the hidden state from the observations is discus§&dized cylinders with time forming the cylinder axis. Now,
in Section I11-D and its advantages are discussed in III-E. Thal, [20], [21], [22], [23] are non-parametric approaches to

abnormality detection problem and its formulation as a changtivity/event recognition, while HMMs, stochastic grammars,
detection problem is discussed in Section IV. The strategi\S @nd DBNs are model based approaches. Our work also

to deal with time-varying number of landmarks is give efines a parametric model (but it is a continuous state HMM)
in Section V. Experimental results on the airport termindPr &ctivity performed by a group of objects and there are some

abnormal activity detection problem are presented in SectiBi1er differences. First, we treat objects as point objects and
VI. Extensions of our framework to tracking observations arffnce We can get our observations from low resolution video

to activity sequence identification and tracking are discussgf €ven from other sensors like radar, acoustic or infra-red.
in Section VII. Conclusions are given in Section VIII. Second, we provide a single global framework for modeling
the interactions and independent motion of multiple moving

objects by treating them as a deformable shape.

B. Related Work Particle Filters and Change Detection:Particle filters [24]

Shape Representations:Some of the commonly usedhave been used extensively in computer vision for tracking
representations for shape are Fourier descriptors [7], spliresingle moving object in conjunction with a measurement
[8] and deformable snakes all of which model the shape afgorithm to obtain observations [25], [26], [27]. In [28],
continuous curves. But in our work we are attempting to modgarticle filtering is used to track multiple moving objects but
the dynamics of a group of discrete landmarks (which coutey use separate state vectors for each object and define
be moving point objects or moving parts of an articulatedata association events to associate the state and observation
object like the human body). Since the data is inherentliectors. In our work, we represent the combined state of all
finite dimensional, using infinite dimensional representatiomsoving objects using the shape and global motion of their
of a continuous curve is not necessary and hence we looinfiguration and define a dynamic model for both shape and
only at the representation of shapefft (modulo Euclidean motion. We use a patrticle filter to filter out the shape from
similarity transformations) which was first defined by Kendalhoisy observations of the object locations and use the filtered
in 1977. Active Shape Models introduced by Cootes et al [8hape for abnormal activity detection. We define an abnormal
also consider the shape of pointsi#f. In [10], they define activity as a change which could be slow or drastic and whose
‘Point Distribution Models’ which are principal componentparameters are unknown. An algorithm for change detection
models for shape variation using Procrustes residuals. in nonlinear systems using patrticle filters is given in [29]. But

Modeling Shape Change:There has been a lot of workit assumes that the changed system’s parameters are known
in defining probability distributions in (Kendall's) shape andnd it deals only with sudden changes. In this paper we use a
preshape space and also in analyzing datasets of similar shagpasstic called ELL for detecting slow changes, with unknown
in the tangent space at the mean (discussed in chapter 6, 7 pachmeters [30], [31].
11 of [2], and in [11], [12], [13] and references therein). Many
models for shape deformation of one shape into another have [l. PRELIMINARIES AND NOTATION
been proposed which include affine deformation, thin plate We would first like to clarify that the terms partially
splines, and principal and partial warp deformations (discussellserved dynamical model and HMM are used interchange-
in chapter 10 of [2]). But none of these define dynamicably for “shape activity” models since the partially observed
models for time segeunces of shapes. We propose in this paggnamic model that we define is also an HMM. We uses”
a partially observed dynamical model (which also satisfies th@denote the angle of a complex scalar as well asig fnin”
Hidden Markov Model property and hence we refer to it a®r the argument minimizing a function, but the meaning is
an HMM in the rest of the paper) for stationary and norelear from the context. is used to denote conjugate transpose.
stationary shape activities. Our model for non-stationary shap¢| is used for the Euclidean norm of a complex or real vector
activities is similar in spirit to those in [14] and [15] where theand |.| for the absolute value of a complex scalgy.denotes
authors define dynamical models for motion on Lie groups atite k. x k identity matrix and1, denotes ak dimensional
Grassmann manifolds, respectively, using piecewise geodesictor of ones. Also note that to simplify notation we do
priors and track them using particle filtering. not distinguish between a random process and its realization.
Modeling Activity: There is a huge body of work in com-We review below the tools for statistical shape analysis as
puter vision on modeling and recognition of activities, humagtescribed in [2].
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Definition 1: [2] The Configuration is an ordered setkf &+ jb =0, 0=arg(w*y), (= |w*y| = (y*ww*y)"/2
tuple) of landmarks (which in our case is theuple of point
object locations). Theonfiguration matrix is ak x m matrix Definition 5: [2] The full Procrustes distance between
of Cartesian coordinates of tlikelandmarks inm dimensions. preshapesw and y is the Euclidean distance between the
For 2D data {n = 2), a more compact representation iga Procrustes fit ofw ontoy, i.e.
dimensional complex vector with x and y coordinates forming ) P
the real and imaginary parts. Tleenfiguration spaceis the Dp(w,y) = ﬁ}g}ng(yaw) = [ly —w" (y)||
space of allk-tuples of landmarks i.erR*™. _ W )
Trf';\nslat_lon Normalization: The complex vectpr of the Definition 6: [2] The full Procrustes estimate of mean
configuration ¥,...,) can be centered by subtracting out thghape(commonly referred to aull Procrustes mearn), of a

centroid of the vector, thus yieldingaentered configuration set of preshape&uw;} is the minimizer of the sum of squares

.. 1,17 of full Procrustes distances from eaeh to an unknown unit
Y =CY,yw Where C =1, — kkk (1) size mean configuratiop, i.e.
Definition 2: [2] The pre-_shapeof a configqra@ion mat_rix [i] = arg min - min  D(w;, j1)
(or complex vector),Y;...,, is all the geometric information |l [=1 4= Bi,0i,as,bs
about Y,.,,, that is invariant under location and isotropic n
scaling. Thepre-shape spacgeS?,, is the space of all possible = arg min Z D% (w;, )
pre-shapesS”, is a hyper-sphere of unit radius R(—1m™ willull=1 5=
and hence its dimension {& — 1)m — 1 (a unit hyper-sphere n
in R has dimensiorP — 1). = arg #:ﬁi‘?zl (1 — pwiw; )
Scale Normalization: The pre-shape is obtained by nor- =1
malizing the centered configuratio¥i, by its Euclidean norm, = arg max u* [i Wt 3)
s(Y) = ||Y|| (known asscale or sizeof the configuration), el |l [=1 v

ie. w(Y) = Y/s(Y). _ o st
Definition 3: [2] The shapeof a configuration matrix (or '-€- [i1] is given by the set of compIAex eigenvectors correspond-
complex vector)Y,..,, is all the geometric information abouting to the largest eigenvalue ¢f = 2?;1 w;w; (Result 3.2
Y,qw that is invariant under location, isotropic scaling andf [2]).
rotation i.e.[z2] = {sY,wwR + 1o’ : s € RY R € Shape Variability in Tangent to Shape Space:The structure
SO(m),a € R™}. The shape spaces the set of all possible of shape variability of a dataset of similar shapes can be
shapes. Formally, the shape spaké,, is the orbit space of studied in the tangent space to the shape space. We shall
the non-coincidenk point set configurations i®™ under the consider the tangent projections to the preshape sphere after
action of Euclidean similarity transformations. The dimensiomormalizing for rotation (w.r.t. the pole), which form a suitable
of shape space i8/ = (k—1)m — 1 —m(m — 1)/2. It is tangent coordinate system for shape. The tangent space is a
easy to see thatk, = S* /SO(m), i.e. ¥¥, is the quotient linearized local approximation of shape space at a particular
space ofS*, under the action of the special orthogonal groupoint in shape space which is called the pole of tangent
of rotations,SO(m). projection. Thus Euclidean distance in tangent space is a good
Rotation Normalization: Shape,z, is obtained from a approximation to Procrustes distance, for points in the vicinity
pre-shapew, by rotating it in order to align it to a referenceof the pole. See chapter 4 of [2] for more details.

pre-shapey. The optimal rotation angle is given I8§Y, v) = Definition 7: [2] The Procrustes tangent coordinatef a
arg(w*y) = arg(Y*~), and the shape;(Y,~) = we/?"") = centered configuratiort/, taking . as the pole, are obtained
%eﬁe(yﬁ). by projectingz(Y, 1) (the shape ot aligned toyu) into the

In this work we deal withm = 2 dimensional shapestangent space at, i.e.

and hence the configuration vector is represented ds a vy .

dimensional complex vector and the shape space dimensi6tY, 1) = [l — pp*=(Y, 1) = [, — MM*]Weﬁ(Y’“)- 4

is (2k — 4). The inverse of the above mapping (tangent space to centered
Distance between shapesA concept of distance betweenconfiguration space) is

shapes is required to fully define the non-Euclidean shape ,

metric space. We use the Procrustes distance which is defined Y (0,6, 5. 11) = [(1 = v"0)' 2+ v]se™7°. ©)

below: . _ ) The shape space is a manifolddfi-' and hence its dimension
Definition 4: [2] The full Procrustes fit of w onto y is is k—2. Thus the tangent space at any point of the shape space

is a k — 2 dimensional hyperplane i6* (or equivalently, a

(2k — 4)-dim hyperplane iriR?*) [2].

wP(y):Bejéw +a+jb  where
ﬁ,é,d,f):ar min D(y,w),

g fuin, (y, w)

D(y, w)=||ly — (ﬁeww +a+ jb). I1l. M ODELING SHAPE DYNAMICS
If y andw are preshapes, it is easy to see that the matchingThe distinction between motion and deformation of a
parameters are (result 3.1 of [2]) deformable shape is not clear. We separate the dynamics



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

of a deforming configuration into scaled Euclidean motioSince the tangent coordinates are evaluated w.r.t. the mean
(translation, rotation, uniform scaling) of the mean shape asbape of the data, assuming that they have zero mean is a valid
non-rigid deformations. This idea is similar to that suggestegsumption. We string the complex tangent vector components
in [32] for continuous curves. We define a continuous staées a2k dimensional real vector and define a linear Gauss
HMM for the changing configuration of a group of movingviarkov model on it to model the shape deformation dynamics.
landmarks (point objects) with the shape and scaled Euclidddate that since we are assuming small variations about a mean
motion parameters being the hidden state variables and #mape, a first order Gauss Markov model is sufficient to model
noisy configuration vector forming the observation. We reféhe shape dynamics in this case, i.e.

to it as a “shape activity”. A'stationary shape activity’is
defined as one for which the shape vector is stationary i.e. the
mean shaperemains constant with time and the deformation vo ~ N(0,Eu0), m~N(0,E04) (8)

model is stationary while in @on-stationary shape activity” here {n,} is i.i.d. Gaussian system noise. The deformation

the mean shape changes with time. process is assumed to be stationary and ergodic. Under this
We discuss below the stationary and non-stationary shapgumption the above is a first order autoregressive (AR)

activity models and also the particle filtering algorithm tgnodel. Thus S0 = Syt = Sy, Spy = 5, and 4, = A

estimate the shape from the noisy configuration observatiopsihe autoregression matrix with < I. Thus all the three

The entire discussion assumes a fixed number of landmarkgrameters can bearnt using a single training sequencé

But in certain applications like the airport scenario with peop ngent coordinatedy, }, as follows [33]

deplaning, the number of landmarks varies with time. We

vy = Ao+

deal with this by resampling the curve formed by joining the 4 = R,(1)x,;!  where

landmarks to a fixed number of points. This is discussed in 1 & - 1 Z -

Section V. Also, note that in this representation of the shape ofw = T Z vy and  Ry(1) = T_1 Z Utls—1
t=1 t=2

discrete landmarks, correspondences between landmarks are

. T
assumed to be known across frames. Since the number 1 T
landmarks is usually smallk(= 8 in this case), this is easy “™ ~— T Z@t — Avi—1) (v — Ave) ©)
to ensure. =l

and the joint pdf ofv; is given by

A. Stationary Shape Activity: Shape Deformation Model in plo) = N(©O,5,), Vi
Tangent Space

A sequence of point configurations from a stationary shape poduia) = N(Av, Zn), V. (10
activity (SSA), with small system noise variance, would li&ote that the asymptotically stationary case where: I but
close to each other and to their mean shape (see figure 1(&)o # X, so that:,; — ¥, only for large time instants
Hence a single tangent space at the mean is a good appféx— oc), can also be dealt with in the above framework. In
imate linear space to learn the shape deformation dynamibst caseZ, o is defined using a-priori knowledg®,, can be
for a SSA. We represent a configuration of landmarks byl@arnt exactly as in (9), ang,,, R, (1) can also be learnt as in
complex vector with the x and y coordinates of a landmax@) but by excluding the summation over the initial (transient)
forming the real and imaginary pafta\Ve discuss the training time instants.
algorithm i.e. how to learn the shape dynamics given a single
training sequence of configurations. Given a sequence Bf Stationary Shape Activity: Partially Observed (Hidden)
configurations with negligible observation noi¢;.....: }, we Shape Dynamics

learn its Procrustes mean and evaluate the tangent coordinatgf the previous subsection we defined a dynamic model on

of shape (using the Procrustes mean as the pole), as the shape of a configuration of moving points. We assumed
Y, = OYrawt that the observation sequence used for learning the shape
A ’ dynamics has zero (negligible) observation noise associated
se = s(Yy) = [[Yil], wi = Yi/st, with it (e.g. if it were hand-picked). But a test sequence
. T . of point configurations{Y; .}, will usually be obtained
Ho= argu:mﬁll’ilﬂ [Z wywg | automatically using a measurement algorithm (e.g. a motion
t=1 , detection algorithm [34]). It will thus have large observation
0 = 0(Yi,p) =arg(wip), 2z =we’™ (6) noise associated with it, i.€Y,qw: = Y25 + CGawy
Vit where (¢ IS zero mean ii.d. Gaussian NoiS§y.y ¢ ~
A * * e] ¢ i
v 2 u(Y,p) = [In — pptze = [T — pp ]ti @) J\/(O, Yobs,raw,t)- If the d|ﬁerer.1t. landmarks are far apart, the
St noise can be assumed to be i.i.d. over the different landmarks

lIin the entire paper, “mean shape” refers to the Expected Procrus_?e% W_e” (I'e' Whltez"bsﬂ‘awvt)‘ Now tranSIaJ_[lon normallza_tlon
estimate of mean shape is a linear process and hentg= CY,, ; is also Gaussian
2Note that all transformations between the configuration space to shape
space and tangent to shape space are definetl (k-dim complex space) but ~ 3Note that here we have assumed Gaussian observation gpise:, but
the dynamical model on tangent coordinates is definé@%h by vectorizing in general a PF can track with any kind of noise. But for non-Gaussian.
the complex vector. This is done only for compactness of representation. This in general not possible to define a distribution {prand one would have
entire analysis could instead have been don®h. to treat the translation as part of the state vector.
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with observation noise;;, given by The shape deformation dynamigequation (8) in Section
[lI-A) and the motion modeldefined above (equation (13))
form the system modelhile equation (12) defines thebser-

(C is the centering matrix defined in (1)). But the mappin ation model Thus we have definea continuous state HMM

from centered configuration space to the tangent space F?é‘,”!a','}’ ohbservedIQynam|f; modqﬁar ah“statlonqry shgpe
nonlinear (scaling by|Y;|| followed by rotation to align with activity”. The model is non-linear since the mappingX:) is

mean) and hence it is not possible to obtain a closed foﬁ.ﬂnlmear.

expression for the pdf of the tangent coordinates given that

there is observation noise in the configuration vector. To deal i )
with this, one solution is to define a partially observed dynan: Non-Stationary Shape Dynamics

ical model which can then be tracked using a particle filter For a “non-stationary shape activity” model (details in [6]),
(PF) to estimate the distribution of the tangent coordinat@se mean shape is time-varying and hence modeling the shape
of shape given the noisy observations. The observed centeggflamics requires a time-varying tangent space (see figure
configuration,Y;, forms the observation vector and the shape(b)) defined with the current shape as the pole. Note that,
scale and rotation form the hidden state vector. We diSCHﬁ@dmo reflections, there is a one to one mappmg between
the PF in Section IlI-D and its advantage over an Extend@ge tangent space at any point on the shape manifold and the
Kalman Filter in Section llI-E. shape manifold. But the distance between two points on a
Now, we have the followingobservation modefor a “sta- tangent plane is a good approximation to the distance on the
tionary shape activity” with the observation vectdy being shape manifold only for points close to the pole of the tangent
the centered configuration vector and the state ve&or= plane. Hence the assumption of i.i.d. system noise to go from
[Ut, 8¢, O] shape at to shape at + 1 is valid only for shapes in the
vicinity of the pole. Thus when the shape variation is large
Vi o= h(Xy) * 2 G ~ N0, Zopa.r) (for NSSA), there is a need to define a tangent space with the
hXi) = zsie 7%, wherez, = (1—v +v)"?lu+v  current shape being the pole.
(12) The state space now consists of the mean shape attfime

. i ) z, the “shape velocity coefficients” vectat,, and the motion
Defining scale and rotation (motion parameters) as part IH rameters (scale, rotationd,) i.e. stateX; = [z, i, 5¢, 0.

the state vector implies that we need to define prior dynamig.sie the tangent space at by 7. . We then have the
mo_dels for them (mc_)tion model). _Theotion modelca_n _be_ following dynamics: The tangent coardinate ofin T, .
deflr_1ed bas_ed on either the motion _of the shape if it is (Benoted byuv, (2, 2_,)) defines a“shape velocity” (time
moving configuration or based on motion of the measuremelivative of shape) vector. We perform a Singular Value

sensor if the sensor is moving (for e.g. a moving camera B%composition [33] of the tangent projection matrf; —

just an unstable camera undergoing a slight random motion)Z(g[lZ;_ﬂC’ to obtain an orthogonal basis for ttie— 2)-dim

a combined effect of both. A camera on an unstable platforf@dyent hyperplang., .. Denote the orthogonal basis matrix
like an unmanned air vehicle (UAV), will have small random. by U(z_1) °. The (k —2)-dim vector of coefficients
Zt—1 - "

X-y motiop (translation), moti(_)n in z d_irection (scale chang%hong these basis directions, denoted &Yz, z_1), is a
and rot_atlon about the z axis (rotation angle change). TREatficients vector for the “shape velocityly, i.e. v —
translation gets removed when centerlig,, .. The scale and U(z-1)ce. The shape at, = is obtained by “moving™z;_

rotation can be modeled in this case by using an AR model 1he shape manifold as follows: “Move” an amoup{from
both for log of scale and for the unwrapped rotation aﬁgleorigin) in 7., , and then project back onto shape space. This

€., is done as followsz; = (1 — v} v,) /22 _1 + vt
logs; = aglogsi_1+ (1 — ag)ps + ney We define a linear Gauss-Markov model on shape velocity
loo s N 02) n N(O 02) v; Which corresponds to a linear Gauss Markov modelcfor
&0 Hs:9s)> st o We can then summarize the shape dynamics as follows:

Zobs,t = Czobs,raw,tCT (11)

O = oapb_1+ (1 —ap)pg +no

bp ~ N(0,03), mnes~N(up,0}) (13) o = Acoicir+ng, ng~N(0,Snc2)
The motion model parameters can be learnt using the training’ U(ztfl)ct’m U(z-1) = orthogonal basig, _,)
sequence values ¢k, }7_, and{6;}7_, given by (6).{6;}7, 2 = (1 —vjv) "ze1+ . (14)

will have to be the unwrapped value of the rotation angle ) _ ) )

to learn a Gaussian model. Also, one can either assuthd/€ assume a time invariant AR model dm;}, i.e. v; =
wide sense stationarity, in which case,o?,02,a, and Av.2vi-1+n,; then we have a time varying Gauss-Markov
W, 04,02, g can be learnt using Yule-Walker equations [33],

or assume a random walk motion model(get = 1 and 5The basis vectors,{g”}fb."’:_f, are arranged as column vectors

oy = 1), depending on the application. of a matrix, U(z;—1), ie. U2 = fu,y u, pom, ).
Uf’x(k”) = orthogonal basig:, ,) is evaluated as :U; =
4since we are modeling only random motion of a camera, a first ord€ifui,t@ where Upyu SUS, o = [k — z-12{ 4]C, andQ =

linear Markov model for log of scale and rotation is sufficient in this case.[l(k,Q)X<k,2),O(k,2>x2]T
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Let z, = [cos 6, sin G]T,

H , ‘
Avgyy = Acpiq[—sinb, cos )T,
Acy1 = |AB| is a scalar inR?
(a) Stationary Shape Activity (SSA) (b) Nonstationary Shape Activity (NSSA)

Fig. 1. SSA & NSSA on the shape manifold which is depicted using a cirgl),(instead of a compleg”~! sphere. In (a), we show a
sequence of shapes from a SSA; at all times the shapes are close to the mean shape and hence the dynamics can be apgfpximated in
(tangent space at). In (b), we show a sequence of shapes from an NSSA, the shapes move on the shape manifold and hence we need to
define a new tangent space at every time instant.

model onc; with are linear Gaussian, the posteriors would also be Gaussian
N and can be evaluated in closed form using a Kalman filter.

Acat = Ul(zi-1)"Ay2U(2-2), and For nonlinear or nonGaussian system or observation model,

Yneat = Ulzt-1)"Bnw2U(2-2). (15) except in very special cases, the filter is infinite dimensional.

Note that a Markov model on the shape velocity correspondsta'ticle Filtering is a sequential Monte Carlo technique for
a second order Markov model on shape(hence the subscript approximate nonlinear filtering which was first introduced in
2" on the parameters). Some special casesAyg = 0 or [24] as Bayesian Bootstrap Filtering.

i.i.d. velocity (first order Markov model on shape}, » = Let the initial state distribution be denoted by(dz), the
I which corresponds to i.i.d. shape acceleration adng = state transition kernel b¥k;(x, dz:11) and the observation
A ag or stationary shape velocity. likelihood given the state, by, (Y;|z;). For the SSA model,

The motion mode(model ons;, 6;) can be defined exactly the stateX; = [v;, s, 6;], the transition kerneK; is defined
as in equation (13) but now; is the rotation angle of currentby (8) and (13) andg; is defined by (12). For NSSA,
configuration w.r.t. the current mean shape = z,_; and X; = [u, vy, 5¢,0;] and K, is given by (14) and (13). The
hence is a measure of rotation speed. As before, one gamticle filter (PF) [24] is a recursive algorithm which produces
assume the motion model to be stationary or non-stationagy. each timet, a cloud of N particles, {z!"})Y,, whose
The shape and motion model, (14) and (13)), formshstem empirical measure closely “followst; (dx;). It also produces
model The observation modeis as follows: an approximation of the prediction distributiom,,_; (dz) =

Yi = (X)) + G, where B(X,) = zsie % (16) TT(X € dalVie).
. . . It starts with samplingN times from the initial state
1) Training: Given a training sequence of centered aran?ﬂstribution o(dr) to approximate it by nl(dr) —

: : , . pd :
lation normalized) configurationgY;};_,, we first evaluate 1 ZZ_J\LI 5. (dz) and thenimplements the Bayes’ recursion

T follows® : : ) L0
{er,vr, 51, 01} as follows at each time step. Now given that the distribution %f_;
st = ||V, we=Y:/st, given observations upto time— 1 has been approximated

. 1 N ..
0.V, z1) = arg(wiz_1), z(Yy, z_1)=we, ast¥ (dx) = NZi;l 5mgl(dx), the prediction St?p sam-
ve(Ye,2e-1) = [Tk — 2e—127_1])%t, ples the new state?tl) from the distributionKt,l(xE?l,.).
(Vi ze1) = Ulzeer) 2. (17) The empirical distribution of this new cloud of particles,

. o o (de) = %25\2155(@(0@) is an approximation to the
Assuming a time invariant AR model on shape velocity, conditional probability distribution of(; given observations
one can learn its parametera,(2, ¥, ,,2) as in (9) and then ypto timet — 1. For each particle, its weight is proportional

define the time-varying Markov model fef using (15). to the Iikelihood(_())f the observation given that particle, i.e.
(%) Ng:(Yelz,") ~N 1 N (@) i
Wy = Sn . Ty (dx) = Y w0 (dx) is
D. The Particle Filtering Algorithm ' o ol N o

then an’estimate of the probability distribution of the state at

The problem of nonlinear filtering is to compute at each timgy e, given observations uptil time We sampleV times with
t, the conditional probability distribution, of the stakg given replacement fromiN (dz) to obtain the empirical estimate

the observation sequend,, — (Vi.Va...V0) mlds) = xN(gp) = L3 6,0 (dr). Note that bothry¥ and
r(Xy € dz|Y1.,). Now if the system and observation mo e%\pproximatem but the' last step is used because it increases

SNote, the last equations; = Us*z, holds because: = Up*v; = the. sampling efficiency by eliminating samples with very low
Ut I — ze—127_ ]zt = Us*[I — z—12)_|C2e = Ur*UsUs* 2z = Up* 2. Weights.
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E. Particle Filtering versus Extended Kalman Filtering

We discuss here the need for a PF and why it is better th
an extended Kalman filter. An Extended Kalman Filter (EKF)dL
[35] linearizes the non-linear system at each time instant
using Taylor series and runs a Kalman filter for the linearized
system. For the Taylor series approximation to be accurate, one
requires the initial guess (point about which you linearize) to
be close to the actual value at every time instant. Typically
linearization is done about the predicted state. This means

L +1 frames.dy 11 (t) is defined as follows: K is a constant
defined in

+1(2)

equation (19))

—2log p(ve—1,Vt—L41,---Vt)
T 1
'UthZv Ut—L

t
+ Z (vr — AUT,l)TEgl(vT — Av,_q)
T=t—L+1
(18)

that one poorly estimated state will cause more error in thgte here thaty, is always rank deficient sincgy,} lie in a

linearization matrices for the next prediction and this error willoz, —

4)-dim hyperplane oft?* and hence the inverse defined

propagate (thus an EKF cannot recover once it loses trackhove actually represents the pseudo-inverse.

Loss of track can occur due to an outlier observation, modeling
error, large system noise or large linearization error. A PF on

the other hand is stable under mild assumptions [36], [37] afd Partially Observed Case

hence it gets back in track more easily after losing track.

In a partially observed system, the observation noise in the

Also an EKF is unable to track non-Gaussian systems, @onfiguration landmarks’ measurements is non-negligible and
particular systems with multi-modal priors or posteriors, whilé is defined by the observation model discussed in Section

a PF can. Multi-modal system models are required to modélB.

The PF is used to estimate the posterior distribution

a sequence of activities or multiple simultaneous activitiesf shape at timeg given observations upto— 1 (prediction)
Also in particle filtering, the number of particled/, required and uptot (filtering). We use the change detection strategy
to achieve a certain performance guarantee on estimation erdmscribed in [30], [6].

does not increase with increasing dimension of the state space)
[25], it depends only on the total randomness in the system.
So for a system which is more random (larger system noise or
observation noise), the PF performance can be improved by
increasingN.

IV. ABNORMAL ACTIVITY DETECTION

An abnormal activity (suspicious behavior in our case) is
defined as a change in the system model, which could be
slow or drastic, and whose parameters are unknov@iven
a test sequence of observations and a “shape activity” model,
we use the change detection strategy discussed in [30], [6]
to detect a change (observations stop following the given
shape activity model). The cases of negligible observation
noise (Fully Observed) and non-negligible observation noise
(Partially observed) are discussed separately. We consider only
stationary shape activities in this work.

2)
A. Fully Observed Case

The system is said to be fully observed when the function
h(.) is invertible and the observation noise is zero (negligible
compared to the system noise,). For such a test sequence,
the shape dynamics of Section IlI-A fully defines the “shape
activity model”. We can evaluate the tangent coordinates of
shape ;) directly from the observations using (7). We use
log-likelihood to test for abnormality. A given test sequence
is said to be generated byr@rmal activity iffthe probability
of occurrence of its tangent coordinates using the pdf defined
by (10) is large (greater than a certain threshold). Thus the
distance to activity statistic for anl'+ 1’ length observation
sequence ending at time dp.(t), is the negative log
likelihood of the sequence of tangent coordinates of the shape
of the observations (first used by us in [38]). We can test for
abnormality at any time by evaluatingdy, 11 (t) for the past

If the abnormality is a drastic one it will cause the PF,
with N large enough to accurately track only normal
activities, to lose track. This is because under the normal
activity model (equations (8) and (13)), the abnormal
activity observations (which do not follow this model)
would appear to have a very large observation noise.
Thus the tracking error will increase for an abnormal
activity (very quickly for a drastic one) and this can be
used to detect it. Th&racking error (TE)or prediction
error is the distance between the current observation and
its prediction based on past observations, i.e.

TES V=Vl = [I¥ = EYilYou-]l”
||Y;5 - Eﬂ't\t—] [h(Xt)]||2

Also, instead of tracking error, observation likelihood
(OL) can also be used and as discussed in chapter 2 of
[6], OL ~ TE for white Gaussian noise.

For the case when the abnormality is a slow change (say
a person walking away slowly in a wrong direction), the
PF does not lose track very quickly (the tracking error
increases slowly) or if it is a short duration change it
may not lose track at all. The tracking error will thus
take longer to detect the change or it may not detect it at
all. For such a case, we use tBgpected (negative) Log
Likelihood (ELL)[31], [30], ELL = Ey,[—logp(v;)].
Note that the ELL is a posterior expectation of the right
hand side of (18) with. = 0. In general, one could use

a sequence of past shapds> 0) in this case as well.
The expression foF' LL is approximated byeLL" as
follows

N
1 nT i
ELLN £ B ~[—logp(v)] N Z’UE ) Z;lvi )+ K,
i=1

where K

~log \/(2m)21|5, |
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Now since the PF loses track slowly, the estimateget a fixed number of landmarks, Assuming the observed
posteriorwf’O’N remains a good approximation of thepoints to be uniformly sampled makes this scheme very
true posteriorr;”® for a long time. But a slowly changing sensitive to the changing number of landmarks. Whenever
shape introduces a systematically increasing bias in ttiee number of landmarks changes, there is a large change
tangent coordinates of shape (they no longer remain zénothe re-sampled points’ configuration. This leads to more
mean) and hence ELL would increase. These intuitifalse alarms while performing abnormal activity detection.
idea is analyzed rigorously in [6], [39]. But unlike “arc-length resampling”, this scheme gives equal

Thus to detect any kind of abnormality (slow or drastic)importance to all observed points irrespective of the distance
without knowing its rate of change, we use a combination Bgtween consecutive points and so is more quick to detect
ELL and tracking error. We declare a sequence of observatioggnormalities in shape caused even by two closely spaced
to be abnormal when either ELL or tracking error exceeds if20ints. We discuss an example in Section VI-D.
corresponding threshold.

VI. EXPERIMENTAL AND SIMULATION RESULTS

V. TIME-VARYING NUMBER OF LANDMARKS A. Dataset and Experiments

All the analysis until now assumes that a configuration We have used a video sequence of passengers deplaning
of points is represented as an elementf3f wherek is a and walking towards the airport terminal as an example of a
fixed number of landmarks. Now we consider what happemstationary shape activity”. The number of people in the scene
when the number of landmarks (here the point objects) varies with time. We have resampled the curve formed by join-
time-varying even though the curve formed by joining theing their locations using “arc-length resampling” (described in
locations remains similar. For example, a group of peopfection V) in all experiments except the temporal abnormality
(or also a group of vehicles) moving on a certain path witf3] detection where we use “uniform resampling”. As we
fixed initial and final points but number of people on th@&eeded observation noise-free data to learn the system model,
path decreases by one when a person leaves and increagesised hand-marked passenger locations for training. The
by one when someone enters. In such a case, we linearlgan shapg;, and the tangent space Gauss Markov model pa-
interpolate the curve by joining the landmark points in gameters A, ¥, ¥,,, were learnt using this data (as discussed
predefined order and then re-sample the interpolated curveiriGection 111-A). Also the motion model parameters (which in
get a fixed number of landmarks. The interpolation depends s case model random motion of the camera) were estimated
the parametrization of the curve, which is an ill-posed problewith this data. Simulated test sequences were produced by
when the data is inherently discrete. We have attempted to @gkling observation noise to the hand-marked data. We did this
two different schemes which exist in the literature - “arc-lengtio study robustness of the method to increasing observation
re-sampling” (also known as “equidistant sampling”) and “uninoise. We also tested with real observations obtained using
form re-sampling” which use two different parameterizationg. motion detection algorithm [34]. Both real and simulated

In “arc-length resampling”, one looks at the curve formedobservation sequences were tracked using the PF described in
by joining the landmarks in a predefined order, and parametSection IlI-D with the number of particlesy = 1000.
izes the x and y coordinates by the lengdthof the curve, upto  This video was provided to us by the Transport Security
that landmark. Lefz,(1), . (I)] be one-dimensional functions Administration (TSA) and did not have any instances of abnor-
of the curve length and seen this way the discrete landmarkal behavior. Abnormal behavior was simulated in software by
ey = (), y; = w(ly),j = 0,1,.k, — 1 are non- making one of the persons walk away in an abnormal direction
uniformly sampled points from the functidm, (1), y;(1)] with  (in the results shown one person was made to walk away at
lo= 0,03 =10+ (zj — 2ej-1)> + (Yr; — yr;-1)°. We an angle of45° to the X-axis, see figure 2(b); 2(a) shows
linearly interpolate using these discrete points to estimate thenormal activity frame). Now, the person could be moving
function[z(1), 7:(1)] and then re-sample it uniformly at pointsaway at any speed which will make the abnormality a slow
l; = (j—1)L/k,j = 0,1,..k — 1 (L is the total length, or a drastic change. We have simulated this by testing for
L? = 37, 1%) to get a fixed numberk, of uniformly spaced walk away speeds df, 2, 4, 16, 32 pixels per time step in both
landmarks. Thus, for every configuration &f landmarks, x and y directions. The average speed of any person in the
we get a new configuration of uniformly sampled (and henegrmal sequence is abouitpixel per time step. Thus walk-
uniformly spaced); landmarks. The linear interpolation andaway velocity ofl pixel per time step, denoted asl. = 1,
resampling stages can be approximated as a linear transt@rresponds to a slow change which does not go out of track
mation, B, (a k; x k matrix), applied to the original points. for a long time whilevel. = 32 is a drastic change that causes
The covariance of observation noise in the re-samjpled poimite PF to lose track immediately.
becomes:,, , = thﬁgs.tBtT = B,Cheyly CRBL We show change detection results and tracks using real ob-

“Uniform resampling” , on the other hand, assumes that thservations of the passengers’ locations in each frame obtained
observed points are uniformly sampled from some processing a motion detection algorithm described in [34]. The
[z:(s),y:(s)], i.e. it assumes that the observed points aghility of our algorithm to deal with temporal abnormalities
parameterized as;; = z:(s;),y:,; = w(s;) with s; = [3] is demonstrated as well. We also plot the ROC curves for
(j — 1)/k:. We linearly interpolate to estimaté;(s),4:(s)] change detection using the ELL, the tracking error (TE) and
and re-sample it uniformly at point§; = (j — 1)/k, to a combination of both.
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Frame 7835 Frame 7685

(a) A ‘normal activity’ frame with 4 people (b)Abnormality introduced by making one
person walk-away in an abnormal direction

Fig. 2. Airport example: Passengers deplaning
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(a) ELL (b) Tracking error

Fig. 4. ELL and Tracking error plots: Real Observations. Abnormality was introduced=a6. The ELL is able to detect slow changes
better while the tracking error works better for drastic changes. The plots are discussed in Section VI-B.

B. ELL versus Tracking Error: Slow and Drastic Changes abnormality (vel.=1) introduced at = 5 which is tracked
correctly for a long time (tracking error plot is shown in figure
Figure 3 shows ELL and tracking error plots for simu4(b)) and hence we need to use ELL to detect it (ELL plot is
lated observation noise and figure 4 shows the plots for resdown in figure 4(a)). Figure 9(c) shows a drastic abnormality
observations. Real observations are obtained using a mot{onl. = 32) which was also introduced dt = 5 but loses
detector [34]. Observation noise is because of the sensor ndrsek immediately. In this case the abnormal observations are
and motion detection error. Now, figure 9(b) shows a slow
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(a) Slow change (vel.=1\WORKS

Fig. 5. ROCs for Change detection using ELL. Blue circles, red stars, majenta triangles and cyan diamonds plois2are=f&; 9, 27, 81
respectively. Note that the two plots have different y axis ranges. The ELL completely fails for drastic changes. Detection delays in (b) are
very large (60 time units) while for the slow change maximum detection delay is only 7 time units. Plots are discussed in Section VI-C.

Tracking error, vel = 1

L L
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(b) Drastic change (vel.=32): FAILS

Tracking ertor, vel = 32
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(a) Slow change (vel.=1): DOES NOT WORK  (b) Drastic change (vel.=8ZDRKS

Fig. 6. ROCs for Change detection using Tracking error. Blue circles, red stars, majenta triangles and cyan diamonds ploig,are for

3,9,27,81 respectively. Please note that the two plots have different y axis ranges. Tracking error does not detect slow changes easily.

Detection delays in (a) are large (maximum delay is 28 time units) while drastic changes are detected almost immediately witld delay
time units. Plots are discussed in Section VI-C.

ignored and the PF continues to follow the system mod&LL/TE strategy are shown in Figure 7. As is discussed below,
As a result, the ELL (plot shown in figure 4(a)) confuses ity combining ELL and TE we are able to detect all slow and
for a normal sequence and fails completely, while trackindrastic changes with detection delay less than 7 time units.
error (plot shown in figure 4(b)) detects it immediately. In

figure 4(a), we show the ELL plot for increasing rates & RO curves and Performance Degradation with increasing
change. Withvel. = 1, the abnormality (introduced a&t=5) pservation Noise

gets detected at = 27 and withvel. = 4 it gets detected o : i i ,
at t — 12. For vel. — 32, the ELL is unable to detect D€ intuition discussed above is captured numerically in
the abnormality. The tracking error (figure 4(b)) detects thFQe ROC (Receiver Operatlng Charactgrlstlc) curves [33],
abnormality immediately (at — 6) while it misses detecting (401 for change detection using ELL (figure 5(a) and (b)
the slow abnormality(el. — 1). for sloyv and drastic changes re_spectlvely), using tracking
error (figure 6(a) and (b)) and using a combination of both

This demonstrates the need to use a combination of ELL affidure 7(a),(b),(c),(d)). Please note that every figure in the
tracking error to detect both slow and drastic changes (sinrR®C plot has a different y axis range. The blue circles, red
the aim is to be able to detect any kind of abnormality withtars, magenta triangles and cyan diamonds are the ROC plots
rate of change not known). As explained earlier, we declare for simulated observation noise with increasing variances of
abnormality if either the ELL or the tracking error exceeds it3, 9, 27,81 square pixels. The ROC for a change detection

corresponding thresholds. The ROC curves for this combinptbblem [40] plots the average detection delay against the
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Fig. 7. ROCs for Change detection using the combined ELL-Tracking error. In this case, for each observation noise variance, there are
multiple curves, since one needs to vary thresholds for both ELL and tracking error to get the ROC. A single curve is for the ELL threshold
fixed and tracking error threshold varying. We have a set of curves for varying ELL thresholds. The maximum detection delay is 2 and 3
time units foro2,, = 3 ((a) and (b)), and 7 and 4 time units fef,, = 81 ((c) and (d)). Plots are discussed in Section VI-C.

a5

—6— Mormal actvity
—&— Temporal abnormality started ot =6

40

Time, t

Fig. 8. ELL plot for Temporal abnormality detection. Abnormality was introduced &at5. The plot is discussed in Section VI-D.

mean time between false alarms by varying the detectition performance degradation of ELL for slow change and of
threshold. The aim of an ROC plot is to chooseamerating tracking error for drastic change with increasing observation
point threshold which minimizes detection delay for a givenoise is slow. In figure 5(a) (ELL for slow change), detection

value of mean time between false alarms. delay is less than or equal to 2 time units fef,, = 3 and
For the slow changev¢l. = 1), the detection delay is 7 time units foro2,, = 81. In figure 6(b) (tracking error for
much lesser using ELL than using the tracking error while thidsastic change), the detection delay is less than or equal to

opposite is true for the drastic changel( = 32). The detec- 3 time units foro2,, = 3 and 4 time units foro2,, = 81.
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(a)Normal frame: (b)Slow abnormality4l = 1):  (c)Drastic abnormality«el = 32):
In track Still in track Loses track

Fig. 9. Tracks: Real Observations. Plotting the observed and tracked positions of the landmarks (passengers) on the x-y plane. The plots
are discussed in Section VI-E.

Since the aim is to be able to detect all kinds of abnormalitiebservations obtained using a motion detector [34] on the
(abnormality parameters are assumed not known), we propasage sequences. The observation noise was modeled to be
to use a combination of the ELL and the tracking error andaussian (although the PF can filter non-Gaussian noise as
declare a change when either exceeds its threshold. In figurevé|l) and its covariance was learnt from a training sequence
we plot the ROC curves for slow and drastic change detectiohobservations obtained using the motion detector. This shows
using a combination of ELL and tracking error. In this casehe ability of our model to potentially be used for “tracking to
for each observation noise variance, there are multiple curvebtain observations”. Figures 9(b),(c) show tracking of a slow
since one needs to vary thresholds for both the ELL and tfwel = 1) and drastic 4el = 32) abnormality both introduced
tracking error to get the ROC. A single curve is for the ELlat? = 5. As can be seen, the drastic abnormality has lost track
threshold fixed and tracking error threshold varying. We haat ¢ = 7 while the slow one is not totally out of track even at

a set of curves for varying ELL thresholds. We plot the low = 13. The NSSA model tracks abnormality better [6]. Note
and high observation noise cases in two separate plots. As tzett since we use only a point object abstraction for moving
be seen, the combined strategy has better performance tbbjects (here persons), we show observed and tracked point
either ELL or tracking error for all rates of change and for abbbject locations only without showing the actual images.
observation noises (detection delay less than 7 time units in

all cases). VIl. EXTENSIONS
A. Tracking to Obtain Observations

D. Temporal abnormality [3] detection In the entire discussion till now, we used a PF in the

We also tested our method for detecting what is referrdittering mode to estimate the probability distribution of shape
to in [3] as a temporal abnormality (one person stopped ffom noisy observations and used this distribution for ab-
his or her normal path). It gets detected in this framewomormality detection. But the PF also provides at each time
because there is a change in shape when the person behindrig@ant the prediction distributions; (X;|Y1.;_1), which can
stopped person goes ahead of him (curve becomes concaye)used to predict the expected configuration at the next time
We used “uniform resampling” (discussed in Section V) whicihstant using past observations, i, = E[Y:|[Yo_1] =

detected temporal abnormality easily using ELL (figure 8E7r,‘f_l[h(Xt)]- We can use this information to improve the
“Arc-length resampling” does not work too well in this casemneasurement algorithm used for obtaining the observations (a
This is because it tends to average out the locations of tWhtion detector [34] in our case). Its computational complexity
closely spaced points, thu_s smoothing out the concavity whighy pe reduced and its ability to ignore outliers can be
needs to be detected. “Uniform resampling”, on the other hanghsroved by using the predicted configuration and searching
assumes the observed points are uniformly sampled and hegﬁg, locally around it for the current observatiorAs we
gives equal weight to all the observed points irrespective gfow in Section VI-E, the observed configuration is close to its
the distances between them. Thus it is able to detect Conca‘ﬁﬁédiction when there is no abnormality or change and hence
caused even by two closely spaced points. Another way s prediction can be used to obtain the observation. An SSA

detect temporal abnormality would be to use a NSSA modglode| can track a normal activity while the NSSA is able to
and look at deviations from the expected value of shag@ck abnormality as well (shown in [6]).
velocity.
“One thing to note here is that in certain cases (for example, if the posterior
of any state variable is multimodal), evaluating the posterior expectation as a
E. Tracks prediction of the current observation is not the correct thing to do. In such a

Fi 9 h | ob . f ircl case, one can track the observations using the CONDENSATION algorithm
igure 9(a) shows a normal observation frame (circle ] which searches for the current observation around each of the possible

and the corresponding tracked configuration (stars), for reak:),: =1,2..N.
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If used in this “tracking observations and filtering” framestrategy using particle filters which has been proposed and
work, a lot of drastic abnormalities can be detected at the mearalyzed by us in past work [30], [31], [41]. Experimental
surement stage itself because no observations will be foursdults have been shown for abnormal activity detection in an
in the “vicinity” (region of search defined using observatiomirport scenario.
noise variance) of the predicted position. But an outlier might As part of future work, we hope to implement joint tracking
get confused with a drastic abnormality since even for amd abnormality detection and tracking a sequence of activities
outlier we will not find any observation in the “vicinity”. The (discussed in Section VII). Also, in this work, we have experi-
difference is that outliers would be temporary (one or twmented only with stationary shape activities. We are currently
time instants and then the PF comes back in track), whilestudying the non-stationary case (discussed in Section 1lI-C)
drastic abnormality will appear to be an outlier for a sequenae more detail. We hope to characterize (define a pdf for)
of frames. Thus by averaging the number of detects overspecific instances of a normal activity in the non-stationary
sequence of past time instants, we can separate outliers freese and to define the abnormality detection problem. The
real abnormalities. non-stationary shape activity model provides the flexibility to

Also, if the configuration is a moving one, then the predictegiodel and track a much larger class of group activities. We are
motion information can be used to translate, zoom or rotadéso experimenting with a piecewise stationary shape activity
the camera (or any other sensor) to better capture the scarmlel which can be used along with ELL for activity sequence
but in this case, one would have to alter the motion model $@gmentation and tracking.
include a control input. The issue of time-varying number of landmarks needs to
be studied more rigorously by first defining the optimality
criterion to make the interpolation problem well-posed and

B. Activity Sequence Identification and Tracking o
Consider two possible situations for tracking a sequen in deciding the b.eSt strategy. .AISO’ the current shape space
™ modulo Euclidean similarity transformations) can be

of activities. Assume each activity is represented by an S laced b I sh f le. the affi h
so that the sequence of activities is characterized by a ps§Raced by general shape spaces, for example, the afliné snape

(discussed in [6]). The mean shape of each SSA compongﬂ?ce (chapter 12 of [2]) would be useful to make the activity

is known but the transition times are assumed unknown. nvariant to an affine camera’s motlon._ F|r_1aIIy, we plan t(.)
. . . . a?ply our framework to many other applications (discussed in
1) First consider the simple case when there are Jugls

: o ; the introduction).
two possible activities and their order of occurrence is
known, only the change time is unknown. In this case,
one can detect the change using ELL (before the particle

filter loses track) and then start tracking it with the \ye would like to acknowledge Mr. Fumin Zhang and Prof.
second activity's transition model. Andre Tits of the ECE dept. at the University of Maryland,

Now consider the general case when a sequence ®fjiege Park for interesting discussions on the work.
activities occur, and we do not know the order in

which they occur. In this case, we can use a discrete

ACKNOWLEDGEMENT

2)

mode variable as part of the state vector to denote
each activity type. We make the state transition modeh
a mixture distribution and keep the mode variable as
a state. Whenever a change occurs, it takes the modfd
variable a few time instants to stabilize to the correcty
mode. One could replace the multimodal dynamics with
that of the detected mode once the mode variable has
stabilized. Also, in this case we can declare an activity,,
to be abnormal (i.e. neither of the known activity types)
if the ELL w.r.t all known models exceeds a threshold.

[5]
VIIl. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have presented a “shape activity model”,
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