IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. XX, AUGUST 20XX 1
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Rameswar Panda, Niluthpol Chowdhury Mithun, and Amit K. Roy-Chowdhury, Senior Member, IEEE

Abstract—Most video summarization approaches have focused
on extracting a summary from a single video; we propose an
unsupervised framework for summarizing a collection of videos.
We observe that each video in the collection may contain some
information that other videos do not have, and thus exploring
the underlying complementarity could be beneficial in creating a
diverse informative summary. We develop a novel diversity-aware
sparse optimization method for multi-video summarization by
exploring the complementarity within the videos. Our approach
extracts a multi-video summary which is both interesting and
representative in describing the whole video collection. To effi-
ciently solve our optimization problem, we develop an alternating
minimization algorithm that minimizes the overall objective
function with respect to one video at a time while fixing the
other videos. Moreover, we introduce a new benchmark dataset,
Tour20, that contains 140 videos with multiple human created
summaries, which were acquired in a controlled experiment.
Finally, by extensive experiments on the new Tour2( dataset
and several other multi-view datasets, we show that the proposed
approach clearly outperforms the state-of-the-art methods on the
two problems—topic-oriented video summarization and multi-
view video summarization in a camera network.

Index Terms—Video summarization; Sparse optimization.

I. INTRODUCTION

ITH the recent explosion of big video data, it is be-
Wcoming increasingly important to automatically extract
a brief yet informative summary of these videos in order to
enable a more efficient and engaging viewing experience. As
a result, video summarization, that automates this process, has
attracted intense attention in the recent years.

Although video summarization has been extensively studied
during the past few years, many previous methods mainly
focused on summarizing a single video by developing a variety
of selection criteria (e.g., representativeness [18], [79], [8],
interestingness [46], [26]) to prioritize frames/segments for
the output summary. Another important problem and rarely
addressed in this context is to find an informative summary
from multiple videos. Similar to single video summarization
problem, the multi-video summarization approach seeks to take
a set of related videos and extracts key frames/video skims that
presents the most important portions of the input videos within
a short duration. Application areas include any scenarios where
the user is confronted with watching or browsing a set of
related videos, like videos given by a search [42], [73], [77]
or videos captured with multiple video sensors in a camera
network [20], [36], [55], [56]. Given that browsing through all
the videos is a very time consuming task, we want to explore
whether we can automatically create a video summary that can
describe the whole video collection within a short duration.
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Multi-video summarization is related to the general problem
of single-video summarization with two important distinctions.
First, these videos are topically related and hence inter-video
statistical dependencies need to be properly exploited for ob-
taining an informative and diverse summary. Second, different
environmental factors like difference in illumination, pose and
synchronization issues across the multiple topic-related videos
also pose a challenge in summarizing such videos. Thus, direct
use of methods that attempt to extract summary from single
videos may not produce an optimal set of representatives while
summarizing multiple topic-related videos.

To address the challenges encountered in a multi-video
setting, we propose a Diversity-aware Multi-Video Summa-
rization (DiMS) approach to generate an informative summary
by exploring the complementarity between a set of videos.
We observe that each video in the set may contain some
information that other videos do not have, and thus exploring
the underlying complementarity is of great importance for
the success of multi-video summarization. We achieve this by
developing a novel sparse optimization that jointly summarizes
a set of videos to find a single summary that can optimally
describe the video collection. Our summarization approach
consider two aspects. One, it considers “interestingness” prior
in the sparse representative selection to extract summary that is
both interesting and representative of the input video. In partic-
ular, segments with high interestingness score are more likely
to be selected as key video segments compared to the segments
with low interestingness score. Second, we introduce a diver-
sity regularizer in the optimization framework to explore the
complementarity within multiple videos in extracting a high
quality multi-video summary. We finally develop an efficient
alternating minimization algorithm to solve our optimization
problem. Furthermore, rather than manually evaluating the
produced summaries, we introduce a new benchmark dataset
with multiple ground truth summaries for each video as well
as for the video collection. This data allows to asses the
performance of any single-video or multi-video summarization
algorithm in a fast and repeatable manner.

Contributions: We address an important, and practical
problem in this paper—how to extract an informative yet
diverse video summary from a collection of videos. Towards
solving this problem, we make the following contributions.
(1) we propose an unsupervised approach for multi-video
summarization by exploring the complementarity within a
set of videos; (2) we develop a novel diversity-aware sparse
optimization method that can be efficiently solved by an
alternating minimization algorithm; (3) we introduce a new
dataset, Tour20, along with clear ground truth summaries to
evaluate summarization algorithms in a fast and repeatable
manner. To the best of our knowledge, this is the biggest
dataset for summarization available. (4) we show the effec-
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tiveness of our approach in two tasks—topic-oriented video
summarization and multi-view video summarization in a cam-
era network. With extensive experiments on both Tour20 and
several standard multi-view datasets, we show the superiority
of our approach over competing methods for both of the tasks.

II. RELATED WORK

There is a rich body of literature in image processing and
computer vision on summarizing videos in form of a key
frame sequence or a video skim. It is beyond the scope of
this paper to do a comprehensive review. Interested readers
can check [50], [71] for a more comprehensive summary.
Roughly, all these summarization methods can be divided into
two categories: single-video and multi-video summarization.

Single-Video Summarization: Much progress has been made
in developing a variety of ways to summarize a single video in
an unsupervised manner or developing supervised algorithms.
Representative methods along the direction of supervised
algorithms use category-specific classifiers for importance
scoring [60], [68] or learn how to select informative and
diverse video subsets from human-created summaries [25],
[23], [76] or learn important facets, like faces, hands, objects,
diversity [37], [45], [2]. Although these supervised techniques
have shown impressive results, their performance largely de-
pends on huge amount of labeled examples which are difficult
to collect in many cases. Nevertheless, it is generally feasible
to have only a limited number of users to annotate training
videos, which may lead to a biased summarization model.

Without supervision, summarization methods rely on low-
level visual indices to determine the important parts of a video.
Various strategies have been studied, including clustering [12],
[24], [29], [57], maximal biclique finding [7], interest predic-
tion [46], [26], and energy minimization [61], [19]. Leveraging
crawled web images or videos is also another recent trend for
video summarization [32], [67], [33], [58].

Recently, there has been a growing interest in using sparse
coding (SC) to solve the problem of video summarization [18],
[79], 8], [48], [15] since the sparsity and reconstruction error
term in SC naturally fits into the problem of summarization.
Another recent work [17] finds a subset of the source set
to efficiently describe the target set, given pairwise dissim-
ilarities between two sets. In contrast to these prior works
that can only summarize a single video, we develop a multi-
video summarization method that jointly summarizes a set of
videos to find a single summary for describing the collection
altogether. Moreover, we consider interestingness of segments
along with representativeness in the sparse optimization to
extract summaries that are both interesting and representative.

Multi-Video Summarization: Generating a summary from
multiple videos is a more technically challenging problem due
to the inevitable thematic diversity and content overlaps within
multiple videos than a single video. Generally, the applications
of multi-video summarization can be roughly divided into
two categories. The first category is to summarize a group
of topically related web videos given by a search. Some of
early works in this category focused on videos of specific
genres, such as TV news [42], [73] and generated an auto-
matic summary by frame clustering [74] or leveraging genre
specific information, e.g., speech transcripts in news [41], [64].

However, they generally fail to summarize large scale open
world web videos since they are unstructured and range over
a wide variety of content. A system for rapid browsing of
multiple videos are proposed in [9]. A recent approach to the
problem of summarizing multiple sensor-rich videos in geo-
space can be seen in [78]. A supervised approach to summarize
multiple videos captured with hand-held devices is presented
in [77]. However, these systems relies on meta-data sensor
information or semantics related to a geographical area (e.g.,
weather and lighting condition) which are mostly unavailable
while summarizing unconstrained web videos.

The other category of multi-video summarization is to
summarize videos captured with video sensors at the same
time with overlapped or partially overlapped field-of-views in
a camera network. Representative methods in this category
use random walk over spatio-temporal shot graphs [20] and
rough sets [40] to summarize multi-view videos. A recent
work in [36] uses bipartite matching constrained optimum path
forest clustering to solve the problem of summarizing multi-
view videos. An online method for summarization can also
be found in [53]. In [38], [39], summarization is performed
by detecting abnormal events between sensors in a non-
overlapping camera network.

Since both of the categories of multi-video summarization
are inherently related, we develop, to our best knowledge, the
first generalized framework to extract an informative summary
by exploring the complementary information within multiple
videos. We demonstrate the generalizability of our framework
with extensive experiments on several datasets.

III. DIVERSITY-AWARE MULTI-VIDEO SUMMARIZATION

In this section, we start by giving notations and definitions
of the main concepts of our approach, and then present our
detailed approach to summarize multiple videos.

Notation: We use uppercase letters to denote matrices and
lowercase letters to denote vectors. For matrix A = (a;;),
its i-th row and j-th column are denoted by a; and a’
respectively. ||A||r is Frobenius norm of A and tr(A) denote
the trace of A. The {,-norm of the vector a € R" is
defined as [lall, = (X}, |a;|P)!/P and €y-norm is defined
as [lallo = X7, |a;|°. The Frobenius norm of A € R™™ is

defined as (/XL X7, a?j. The £, 1-norm can be generalized

to £ ,-norm which is defined as [|A|l,., = (X, lla:[|7)V/P.
When r > 1 and p > 1, the £, ,-norm is a valid norm since
it satisfies the three basic conditions of a norm including the
triangle inequality ||A||., + ||B||-, > ||A + B||,,,. However,
when r < 1 or p < 1, {, ,-norm is not valid as well as the
o, but we also call them norms for convenience. The operator
diag(.) puts a vector on the main diagonal of a matrix. 1

denotes a vector whose elements are equal to one.

Video Summary: Given a set of videos, our goal is to
find a summary that conveys the most important details of
the original video collection. Specifically, it is composed of
several video segments that represent most important portions
of the input video collection within a short duration. Since,
importance is a subjective notion, we define a good summary
as one that has the following properties:
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e Representativeness. The set of videos should be recon-
structed with high accuracy using the extracted summary.

o [nterestingness. The summary should contain the most
interesting parts of the input videos, e.g., in a collection of
videos related to Eiffel Tower, one does not want to miss a
segment that depicts the colorful night view of the tower.

e Sparsity. Although the summary should be representative
and interesting, the length should be as small as possible.

e Diversity. The summary should be diverse as much as pos-
sible capturing different aspects of the input video collection.
In other words, the amount of content redundancy should be
small in the final set of extracted summaries.

We develop a diversity-aware sparse optimization frame-
work to generate a multi-video summary that characterizes all
the above desirable properties of an optimal summary. The
proposed approach, DIMS, decomposes into three steps: i)
video representation; ii) diversity-aware sparse representative
selection; iii) summary generation.

A. Video Representation

Video representation is a crucial step in summarization for
maintaining visual coherence, which in turn affects the overall
quality of a summary. It basically consists of two main steps,
namely, (i) temporal segmentation, and, (ii) feature represen-
tation. We describe these steps in the following sections.

1) Temporal Segmentation: Our approach starts with seg-
menting videos using an existing algorithm [7]. We divide
each video into multiple non-uniform segments by measuring
the amount of changes between two consecutive frames in
the RGB and HSV color spaces [3]. A segment boundary is
determined at a certain frame when the portion of total change
is greater than 75% [7]. We added an additional constraint
to the segmentation algorithm to ensure that the number of
frames within each segment lies in the range of [32,96]. The
video segments serve as the basic units for feature extraction
and subsequent processing to extract a video summary.

2) Feature Representation: Deep convolutional neural net-
works (CNNs) have been successful at large-scale object
recognition [35]. Beyond the object recognition task itself,
recent advancement in deep learning has revealed that features
extracted from upper or intermediate layers of a CNN are
generic features that have good transfer learning capabilities
across different domains [65], [31]. An advantage of using
deep learning features is that there exist accurate, large-scale
datasets such as Imagenet [62], and Sports-1M [31] from
which they can be extracted. In addition, GPU-based extraction
of such features are much faster than that for the traditional
hand crafted features such as CENTRIST, Dense-SIFT.

In the case where the input is a video clip, C3D fea-
tures [70] have recently shown better performance compared
to the features extracted using each frame separately [70].
We therefore extract C3D features, by taking sets of 16 input
frames, applying 3D convolutional filters, and extracting the
responses at FC6 layer as suggested in [70]. This is followed
by a temporal mean pooling scheme to maintain the local
ordering structure within a video segment. Then the pooling
result serves as the final feature vector of a video segment
(4096 dimensional) to be used in the sparse optimization.

We will discuss the performance benefits of employing C3D
features later in our experiments.

Note that in our current work, we did not consider the
audio information while representing videos. However, we
believe that audio (if available) can be used as a potential
side information along with visual features to select important
segments from a video. One can easily incorporate audio
features in our framework by combining both audio and
visual features to represent a video segment or following
aggregation mechanisms similar to [41], [28]—we leave this
as an interesting direction for future research. Our proposed
sparse optimization approach as described in next section,
is quite flexible in handling multi-modal information while
summarizing videos—we expect more sophisticated ones will
only benefit our approach.

B. Diversity-aware Sparse Representative Selection

We develop a sparse optimization framework that jointly
summarizes a set of videos to extract a summary that describes
the collection together. Consider a set of m relevant videos
given by a video search or generated from a multi-view camera
network, where X = {x' € RYi=1,--- mhLv=1-,m
Each x’ represents the feature descriptor of a segment in d-
dimensional feature space. We represent each video segment
by extracting C3D features as described above.

1) Formulation: Sparse optimization approaches [8], [18]
find the representative segments from a single video X" by
minimizing the linear reconstruction error as

min | —XOZON st 12V <k ZW 1 =1 (1)
The constraint on {9 norm of Z® implies that only k video
segments are chosen as the representative whereas the affine
constraint Z®'1 =1 makes the selection of representatives
invariant with respect to the global translation of the data.

This is an NP-hard problem since it requires searching over
every subset of the k columns of X*). A standard ¢ relaxation
to the problem (1) is given by

min X = XOZO) 5.0 1200, <7 2 1=1 @)
Zv ’

where || Z) 21 = 2 ||Zl(.v)||2 and 7 > 0 controls the level of
sparsity in the reconstruction.! Using Lagrange multiplier, the
optimization problem (2) can be written as,

min [1X©) = XOZO + 41200, 0. 2011 3)
zZw ’

where Aﬁ”) is a regularization parameter. Once problem (3) is
solved, the summary is generated by selecting segments whose
corresponding ||Z§v [l2 # 0. We keep the constraint zZ0' =1
since it can be easily handled as we will show later.

Introducing Interestingness of Video Segments: Note that in
problem (3), all segments are treated equally without consider-
ing the interestingness of some specific segments. Specifically,
sparse optimization approaches [8], [18] only characterizes the
reconstruction capability and sparsity but does not account for
the fact that the selected video segments should be interesting.

'Note that we use 7 instead of k since ||Z Il is not necessarily bounded
by k after the relaxation.
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As a result, it may leave out some crucial segment(s) in the
summary. A good summarization method can certainly benefit
from incorporating such interestingness prior knowledge from
application domain or user specifications. To better leverage
interestingness along with representativeness, we propose a
simple extension to (3) as follows [48]:

min [X®) = XOZO|2 4 2010020, s 2071 =1

VAU
“)
where 0V = [diag(¢”)]™" and ¢* € R™ represent the
interstingness score of each video segment. It is easy to
see that problem (4) favors selection of interesting segments
by assigning a lower score via Q). Thus, given a video,
minimization of (4) selects segments that are both interesting
and representative. More details on the video interestingness
prior are presented in Sec. IV.
The sparse optimization (4) extracts a good summary from
a single video. However, summarizing multiple videos is
ubiquitous in video search or in a camera network, hence,
extending (3) into multi-video setting is of vital importance
for many multimedia applications. One direct way to extend
into multi-video setting is to apply (3) to each of the video,
and then combine the results to produce a single summary.
Mathematically, we have the naive multi-video summarization
approach as follor\rzlvs:

V) 72
Z”X(V) _ xWz( )”F +
v=1

m
A7eMzM,,

v=1

min
zM,z®2), ... z(m)
st. ZW =1, ZW e R V1 <v<m
®)
This approach summarizes videos independently without con-
sidering complementarity of different videos, hence, produces
redundant information in the final summary.

Introducing Complementarity of Multiple Videos: The ob-
jective function (5) summarizes multiple videos independently,
without any constraint. Considering the presence of comple-
mentary information within multiple videos, we introduce a
diversity regularization function to select a sparse set of rep-
resentative and diverse video segments. Specifically, to explore
the complementary information, we enforce a regularizer that
penalizes the condition that two correlated segments from two
distinct videos are present in the summary at the same time.
For example, if the i-th segment from v-th video is highly
correlated to the j-th segment in w-th video, then we do not
need to select both of them simultaneously.

Definition 1. Given the sparse coefficient matrices Z"") and
ZM), the diversity regularization function is defined as:

ny Ny
Ja@, 2 = 3 ) M1z eyl = IW 201, (6)
i=1 j=1

where c; measure the correlation between i-th segment from
v-th video and the j-th segment in w-th video. The second

equality follows from the simple manipulation as ngivw) =

Z;.’:l c,jllz;w) ||2 . More details on correlation between different
video segments are given in Sec. IV.

Minimization of (6) tries to explore the complementarity
by penalizing the condition that rows of two similar video

segments from two distinct videos are nonzero at the same

time. This amounts to enforcing the sparse coefficient matrices
of different videos to be of maximum diversity.

Overall Objective Function: After adding the diversity reg-
ularization function into problem (5), we have the final objec-
tive function as follows:

m
DX - XOZO5 4 2,
v=1

m

10V ZW],,

v=1

min
zM,z®), ... z(m)
+da Y, faZ, 2™

1<v,w<m
VEW

st Z0 1 =1, ZW e R VI <v<m
(7
where A and A, are two trade-offs associated with the sparsity
and diversity regularization functions respectively.

2) Optimization: Tt is difficult to solve the constrained
problem (7). In this section, we propose an alternative algo-
rithm to solve this optimization problem efficiently. With the
alternating minimizing strategy, we can approximately solve
(7) in the manner of minimizing with respect to one video
once at a time while fixing the other videos. Specifically, we
minimize the following objective function with respect to Z()
while keeping all others fixed:

B 2
min |X® - XMZO| 5 + 4,102V,

ZW)
S T (®)
+a Z WOz, s 2071 =1
w=1,v£w

To reformulate the problem (8), we need the following lemma.

Lemma 1. For any two diagonal positive semidefinite ma-
trices W, W e R™" the following equality holds for any
matrix Z € R

IWDZ|lyy + IWDZIyy = IWZl,, 9)

where W = W) + W The proof follows directly from the
fact that ¢ ;-norm is a valid norm and the equality in triangle
inequality holds if both W) and W® are positive semidefinite
matrices. O

From lemma 1, it is easy to reformulate problem (8) as
following:
min [1X® = X ZO | + 401020y + AalWZO
zZv ’ ’
st Z01=1

(10)
where W) = y"_ Lvtw W) Note that both second and
third term in (10) are functions of the same variable Z) with
two trade-offs Ay and A4 respectively. From lemma 1, we can

approximate (10) with one trade-off parameter A as following:

2
min IX® = X ZO| 5+ AKDZOy s 201 =1
z0

(11
where K = Q0 + W®_ For convenience, ignoring the
superscripts, we get

min IX = XZI|% + A Zllgoy st ZT1=1 (12)

where ||Z]|k ;1 denotes the weighted £ ;-norm of Z and is
defined as [|Z|lx .1 = IIKZll,;. When we replace X with
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[XT,a * 1]T where a approaches to infinity, (12) is equivalent
to the following problem:

min IX - XZ|I% + A Zll 2.1 (13)

We can prove equation (12) is equivalent to (13) by expanding
(13) as follows:

IX - XZ|% = IIX* = X" Z|> + 17 =172| (14

where X* is the original X presented in (12). When «
approaches to infinity, Z’1 approaches to 1. Thus, problem
(12) is equivalent to (13).

The objective function (13) is a convex weighted > {-norm
minimization problem which can be efficiently solved using
Alternating Direction Method of Multipliers (ADMM) [4]. The
ADMM procedure to solve (13) is summarized in Algo. 1. 2

The above alternating procedure of DIMS is carried out until
convergence, as shown in Algo. 2.

Algorithm 1 An ADMM solver for (13)

Input: Video feature matrix X, K and 4, u > 0

while not converged do
Ue— XT"X+uD) Y(XTX +uZ - A);
Z — max {||U + A/l - %,o}%
AN—A+ulU-2)

end while

Output: Sparse coefficient matrix Z.

(row-wise);

Algorithm 2 Algorithm for solving (7)

Input: Video feature matrices X, X, ... x(m
for each v do
Initialize Z") by solving (5);

end for
while not converged do

for each v do

Obtain Z® by solving (13);

end for
end while
Output: Coefficient matrices zZW 7@ ... zm)

C. Summary Generation

Above, we described how we compute the sparse coefficient
matrices where the nonzero rows indicate the representatives
for the summary. We follow the following rules to generate a
summary of specified length: (i) We first sort the representative
segments in a video X by decreasing importance according
to the £, norms of the rows in Z(") (resolving ties by favoring
shorter video segments). (ii) We then sort the videos according
to the number of nonzero rows in the corresponding sparse
coefficient matrix (informative score) and compute the number
of segments that should be selected from each video based
on the relative score and user-defined summary length. (iii)
Finally, we construct the video summary by placing the
selected segments from the most informative video at the
beginning and then appending segments from other videos
based on the relative informative score.

2We provide details about the ADMM in the supplementary material. The
supplementary material associated with this paper is available at http://www.
ee.ucr.edu/~amitrc/publications.php

IV. DISCUSSIONS

Interestingness of Video Segments: As existing approaches,
we compute the interestingness score of each segment by
taking into account the rest of the video segments. Specifically,
we first compute the interestingness score of a segment as the
sum of scores predicted for each frame that belong to the
segment and then take the relative score over the maximum
predicted score in a video. We follow [26] to compute the
interestingness score of each frame by considering attention,
aesthetic quality and presence of landmarks/persons. Note that
these forms of interestingness prediction are often used in
several vision tasks and are quite flexible [37], [16], [10], [13].
However, one can also learn a regression model to predict an
interestingness score of domain relevance [25], [68], [75] or
compute with user specifications via human in the loop [27]—
we expect more sophisticated ones will only benefit our
proposed approach. Concretely speaking, our method is not
dependent on a particular definition on interestingness.

Correlation between Video Segments: There are a lot of
ways to measure the correlation between two video segments
cj. In this paper, we employ Scott and Longuet-Higgins
(SLH) algorithm [63] with Gaussian kernel to measure the
correlation, since it is simple to implement and it performs
well in several vision tasks [54], [69]. Specifically, given
the segment-level feature similarity matrix S, computed via
a Gaussian kernel between two videos, SLH algorithm finds
an orthonormal matrix C that permutes the rows of S in order
to maximize its trace. Mathematically,

C = argmax 1r(CTS)

CcTC=1

Maximizing the above function is a singular value decomposi-
tion problem and the optimal solution is given by C* = UDVT,
where the SVD decomposition of § = UEUT and D is
obtained by replacing singular values of E by ones. We use the
matrix C* as the correlation matrix after setting the negative
values to 0 [69]. We will discuss the performance benefits in
employing such correlations compared to the cosine similarity
in the experiments. It is also important to mention here that
our proposed formulation (7) is highly flexible to incorporate
any form of correlations defined between two video segments.

5)

Sparsity Regularization Parameter: The regularization pa-
rameter A in (13) puts a trade-off between two opposing
terms: the reconstruction error and number of representative
segments. In other words, we obtain a small reconstruction
error by selecting more representative segments and vice
versa. As indicated by the update equation of Z in Algo. 1,
when A is large enough, e.g., 4 > A™%, we get Z = 0
that means we select no representative segments. Thus, to
avoid an empty selection, we let 4 < A™%* and obtain
AMY = maxg<i<n ||xiTX||2, as in [18]. In our experiments,
we let 1 = 2= and tune @ between the interval [2,30] [18].

a

Intialization in Algo. 2: Since the alternating minimization
can make the Algo. 2 stuck in a local minimum, it is important
to have a sensible initialization. We initialize the sparse coef-
ficient matrices of m — 1 videos by solving (5) using Algo. 1,
which is a special case (when 44 = 0 in (7)) of our method.
After the initialization, the following question remain: from
which view we should start the alternating minimization? One
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possible way is to randomly start with any video and repeat
the minimization over all videos until convergence. However,
since we have some prior knowledge on which video is more
informative in the collection, we can start with initializing and
fixing more informative videos, and optimize with respect to
the least informative video. More specifically, we start with the
specific Z® which has more number of nonzero rows after
solving (5) since the number of nonzero rows indicate the
relative importance of each video in the collection.

Stopping Criteria: In Algo. 1, the stop criteria is set to

[|UD-ZW||, < € or t > 2000, where ¢ is the iteration number

and € is set to 1077 throughout the exPerlments Sumlarly, in
+1)_f<t)| _

e <1072,

@ is the objective value in the z-th iteration.

Algo. 2, we set the stop criteria as where

Convergence Analysis: We can prove the convergence of the
proposed Algo. 2 as follows: we divide the problem (7) into m
number of subproblems and each of them is a convex problem
with respect to one variable (Algo. 1). The convergence of
Algo. 1 is guaranteed by the existing Alternating Direction
Method of Multipliers (ADMM) theory [22]. Therefore, by
solving the subproblems alternatively, our proposed algorithm
will guarantee that we can find the optimal solution to each
subproblem and finally, the algorithm will converge to the local
solution. In all our experiments, we monitor the convergence
is reached within less than 10 iterations.

Time Complexity Analysis: As discussed earlier, our overall
problem can be divided into m number of subproblems and
each of them can be solved using Algo. 1, we first analyze the
computational complexity of Algo. 1 and then present the total
complexity of our method. We also show that the proposed
approach allows for parallel implementation, which can further
reduce the computational time to a large extent.

In Algo. 1, each iteration contains three substeps (See
Appendix for details): (i) solving a linear system with respect
to U for once and is not repeated for each iteration. Solving
this requires at most complexity of O(n]). However, we can
solve this via n, independent smaller linear systems over the
n, columns of U. Thus, with P parallel processing resources,
we can reduce the computational time to O(r/P), (ii) update
with respect to Z can be done in O(n%) computational time.
However, since the solution correspond to one-dimensional
shrinkage and thresholding operation, we can perform the
update via n, indepedent shrinkage operations over the n,
rows of Z. Thus, with P parallel processing resources, this can
be reduced to O(n2/P), (iii) similarly, update on A can be done
in O(n2/P) computational time with P parallel processing
resources by performing n, independent updates over rows
or columns. As a result, the computational complexity of
Algo. 1 is O(n} +2 % n2) =~ O(n}) and it reduces to O(n/P)
with P parallel processing resources. The proposed approach
invokes Algo. 1 for each subproblem i.e., with respect to
one video alternatively. By adopting the same procedure, the
computational complexity of our approach is O(X}., n3). Note
that time complexity for solving a linear system can be reduced
from O(n}) to O(n>37®) using the Coppersmith-Winograd
algorithm. Therefore, the time complexity of our approach is
oz 1n2 376y and it reduces to o(xy 1n2 376]1/P) with P
parallel processing resources.

V. EXPERIMENTS

In this section, we present various experiments and com-
parisons to validate the effectiveness and efficiency of our
proposed algorithm in two summarization tasks such as topic-
oriented video summarization and multi-view video summa-
rization in a camera network, as explained below.

A. Topic-oriented Video Summarization

Goal: Large collections of web videos contain clusters of
videos belonging to a topic with typical visual content and
repeating patterns across the videos. Given a set of topic-
related videos generated from a video search, can we generate
a single summary that describes the collection altogether?
Specifically, our goal is to generate a single video summary
that can describe the whole video collection.

Dataset: To evaluate topic-oriented video summarization,
we need a single ground truth summary of all the topic-related
videos that can describe the videos altogether. However, since
there exists no such publicly available dataset that fits our
need, we introduce a new large dataset, Tour20, that allows for
the automatic evaluation of summarization methods in a fast
and repeatable manner. We selected 20 tourist attractions from
the Tripadvisor travelers choice landmarks 2015 list?, and col-
lected 140 videos from YouTube under the Creative Commons
license (See Tab. II for names of the tourist attractions). Such a
summary can be a great source of information for prospective
tourists when they plan to visit the place and would like to get
a preview of its main parts*. It is also important to note that
all prior works [78], [77], [42], [41] conducted experiments
on personal test sets, which are not publicly available, thus
making it hard for others to reproduce or to compare the
presented results. We hope the release of our Tour20 dataset
will give researchers a new, dynamic tool to evaluate their
video summarization algorithms in a repeatable and efficient
way". To the best of our knowledge, this is the biggest publicly
available summarization dataset with 140 videos totaling about
7 hours (669,497 frames and 12,499 segments).

Performance Measures. Motivated by [26], [76], [67], we
assess the quality of an automatically generated summary
by comparing it to human judgment. Specifically, given a
proposed summary and a set of human selected summaries,
we compute the pairwise F-measure and then report the mean
value motivated by the fact that there exists not a single ground
truth summary, but multiple summaries are possible.

Ground truth Summaries. Previous topic-oriented video
summarization approaches generated video summaries and
then let humans assess their quality by comparing different
system generated summaries. Specifically, users are shown
different summaries and are asked to select the better one or
assign a rating from a predefined scale. While simple and fast,
this approach does not scale well because the user study has
to be re-run every time a change is made. Another alternative
is to let the humans watch the whole video and select some

3https://www.tripadvisor.com/TravelersChoice-Landmarks#1

4 Although we focus on summarizing multiple videos of a tourist attraction
as an application area in our experiments, our approach is quite general to
summarize any type of videos generated from a search.

5The Tour20 dataset along with the complete groundtruth summaries are
publicly available to download in http://www.ee.ucr.edu/~amitrc/datasets.php.
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TABLE I
COMPARISON WITH SINGLE-VIDEO SUMMARIZATION METHODS ON TOUR20 DATASET. NUMBERS SHOW MEAN F-MEASURES AT 10% SUMMARY
LENGTH, i.e., SUMMARY CONTAINING ONLY 10% OF TOTAL VIDEO SEGMENTS. WE HIGHLIGHT THE BEST AND SECOND BEST BASELINE METHOD. OUR
APPROACH (DIMS) STATISTICALLY OUTPERFORMS ALL BASELINE METHODS BY A SIGNIFICANT MARGIN (p < .01).

[ F-measure [[_ConcateKmeans [ ConcateSpectral [ ConcateSparse | KmeansConcate |

SpectralConcate |

SparseConcate | Graph | DT [ SubMod |  DiMS(ours) |

[ mean 1] 0.396 | 0.413 | 0.450 | 0.455 |

0.465 | 0.503 | 0.457 | 0.476 | 0512 | 0.613 |

of the important segments as the summary. This approach
has the advantage that, once the ground truth summaries are
obtained, experiments can be carried out indefinitely, which
is desirable especially for multimedia systems that involve
multiple iterations and testing. We take this approach in our
work to generate ground truth summaries.

Given the videos that were pre-processed into several seg-
ments, we asked three study experts to select at least 5%, but
no more than 15% segments for each video as well as a single
set of diverse segments that can describe the video collection
altogether. We muted audio to ensure that important video
segments are selected based solely on visual stimuli. Moreover,
we also specify that if some embedded text is only mentioned
in on-screen text, then it should not be labeled as important.
They could use a simple interface that allows to watch all the
videos of a collection at the same time and select important
segments from each video. Note that obtaining these ground
truth summaries was very time consuming. The study experts
are requested to watch the whole video before selecting ground
truth segments as whether a segment is important or not is a
relative judgment within a video. Since the dataset contains
important segments for each video as well as a diverse set of
segments to describe the collection altogether, it can be used
to evaluate both single-video and multi-video summarization
algorithms in an repeatable and efficient way.

To assert the consistency of human created summaries,
we compute both pairwise F-measure and the Cronbach’s
alpha between them, as in [26], [67]. The dataset has a
mean F-measure of 0.643 and mean Cronobach’s alpha of
0.944. Ideally alpha is around 0.9 for a good test [34]. More
details on the dataset consistency and exemplar human created
summaries can be found in the supplementary material.

Compared Methods. We compare our approach with several
methods that fall into four main categories: (1) classical
clustering based methods such as ConcateK means [1],
ConcateSpectral [72], ConcateSparse [18], KmeansCon-
cate [1], SpectralConcate [72], SparseConcate [18])
that use single-video summarization approach over mul-
tiple videos to generate a summary. The first three
baselines (ConcateKmeans, ConcateSpectral, ConcateS-
parse) concatenate all the videos into a single video and then
apply k-means, spectral clustering and sparse coding [18] to
the concatenated video respectively, whereas in the other three
baselines (KmeansConcate, SpectralConcate, SparseC-
oncate), the corresponding approach is first applied to each
video and then the resulting summaries are combined to form a
single video summary. (2) graph clustering based methods in-
cluding Graph [59] and DT [51]. Graph uses normalized cut-
based clustering [59] over the graph constructed using the con-
catenated video [44], whereas DT uses Delaunay triangulation-
based graph clustering to automatically extract informative
and diverse segments from a video. Specifically, a Delaunay
graph is first constructed using the video segments and then all

the edges are classified into short edges and separating edges
using average and standard deviation of edge lengths at each
vertex. More details about the Delaunay graph clustering for
summarizing videos can be seen in [51]. We apply Delaunay
graph clustering to each video separately and then the resulting
summaries are combined to form a single summary. (3) a
submodularity based method (SubMod) [6], [43] that uses
three selection criteria (Exhaustive, Mutually Exclusive and
Interestingness) to extract informative segments from a video.
We follow [6] to model the first two selection criteria and
follow [25] to model interestingness in summarization. We
use the same method [26] to compute the interestingness score
of each video segment and use a greedy algorithm proposed
by Nembhauser et.al. [52] to solve the combined submodular
function. Similar to the DT baseline, we apply submodular
maximization to each video separately and then the resulting
summaries are combined to form a single summary. (4)
state-of-the-art methods including MultiVideoContent [73],
MultiVideoMMR [42] which are specifically designed for
multi-video summarization. MultiVideoContent [73] uses a
greedy approach with a content inclusion measure to summa-
rize multiple videos whereas MultiVideoMMR [42] extends
the concept of maximal marginal relevance [5] to the video
domain for the same purpose.

Note that Eq. (5) represents the SparseConcate baseline
that summarizes multiple videos without any diversity con-
straint. The purpose of comparing with single-video summa-
rization methods is to show that techniques that attempt to
find informative summary from a single-video usually do not
produce an optimal set of representatives while summarizing
multiple videos. Note that the recent two multi-video summa-
rization methods in [77], [78] use meta-data sensor information
or semantics related to a geographical area (e.g., weather and
lighting condition) and are hence left out for comparison.

Experimental Settings. All methods use the same C3D fea-
ture as described in Sec. III-A. For all the compared methods
(including ours), we generate a summary at 10% summary
length, i.e., summary containing 10% of total segments in a
video collection. Such a setting can give a fair comparison
for various methods. We follow [76] and utilize VSUMM
evaluation package [12] for finding matching pair of segments.

Comparision with Single-Video Baseline Methods. Table 1
shows the mean F-measure at 10% summary length on Tour20
dataset. While comparing with the single-video baseline meth-
ods, we have the following key findings from Table I: (1)
The proposed method, DIMS statistically significantly outper-
forms all the compared single-video summarization methods
(p < .01). We observe that directly applying these methods to
summarize multiple videos produces a lot of redundant seg-
ments which deviates from the fact that the optimal summary
should be diverse and can describe the multi-video concepts.
This is probably because these methods are specific to single-
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Fig. 1. Representative video segments generated by our approach (DiMS) in summarizing videos of the tourist attraction Wat Pho. We show the summaries at
10% length and represent each summarized segment using the corresponding central frame. As can be seen, our approach generates a summary that visualizes
most of the concepts related to Wat Pho. Our approach achieved the highest F-measure of 0.722 compared to 0.625 by the MultiVideoContent baseline.

TABLE II
COMPARISON WITH MULTI-VIDEO SUMMARIZATION METHODS ON
TOUR20 DATASET. NUMBERS SHOW MEAN F-MEASURES AT 10%
SUMMARY LENGTH. WE HIGHLIGHT THE BEST AND SECOND BEST
BASELINE METHOD. OVERALL, OUR APPROACH (DIMS) STATISTICALLY
SIGNIFICANTLY OUTPERFORMS BOTH METHODS (p < .01). NAME OF THE
TOURIST PLACES ARE PRESENTED IN THE FORMAT “NAME (# VIDEOS)”.

Tourist Attractions [[MultiVideoContent | _MultiVideoMMR DiMS(ours)
Angkor Wat (7) 0.431 0452 0.567
Machu Picchu (7) 0438 0.507 0.582
Taj Mahal (7) 0.593 0.533 0.679
Basilica of Sagrada Familia (6) 0.488 0.492 0.597
St. Peter’s Basilica (5) 0.586 0.602 0.699
Milan Cathedral (10) 0.481 0.473 0.571
Alcatraz (6) 0.652 0.668 0.755
Golden Gate Bridge (6) 0.527 0.515 0.618
Eiffel Tower (8) 0.436 0.446 0.562
Notre Dame Cathedral (8) 0.463 0473 0.550
The Alhambra (6) 0.553 0.582 0.662
Hagia Sophia Museum (6) 0.473 0.536 0.585
Charles Bridge (6) 0.453 0.534 0.525
Great Wall at Mutiantu (5) 0.493 0.507 0.673
Burj Khalifa (9) 0.450 0.392 0.441
Wat Pho (5) 0.625 0.603 0.722
Chichen Itza (8) 0.514 0.492 0.582
Sydney Opera House (10) 0.503 0.512 0.614
Petronas Twin Towers (9) 0453 0.486 0.643
Panama Canal (6) 0.512 0.544 0.639
mean 0.506 0.517 0.613

video summarization and thus can not take the advantage of
the complementary information among multiple videos. (2)
Among the alternatives, the SubMod baseline is the most
competitive. However, the gap is still significant due to the fact
that the proposed optimization approach efficiently explores
the complementary information in creating an optimal sum-
mary from multiple videos. The mean F-measure performance
improvements over SubMod is about 10% (0.613 vs 0.512)
on our newly introduced Tour20 dataset. (3) Furthermore,
note that our approach DiIMS outperforms the naive approach,
SparseConcate, that summarizes multiple videos without
any constraint with a clear margin (0.613 vs 0.503). This ex-
plicitly corroborates the effectiveness of our proposed diversity
regularization (Eq. 6) in creating an informative and compact
multi-video summary (See Fig. 2 for an illustrative example).
(4) Our approach outperforms both of the graph clustering
based methods (Graph, DT) by a significant margin due to its
ability to efficiently model multi-video correlations.

Comparision with State-of-the-art Methods. Table II shows
the topic-wise mean F-measure performance of our method
along with two multi-video summarization methods on Tour20
dataset. Following observations can be made from Table II: (1)
Our method achieves the highest overall score of 0.613, while
the strongest baseline reaches 0.517 on the Tour20 dataset. Our

(b) Our approach (DiMS)

Fig. 2. Role of diversity constraint in summarizing videos of Taj Mahal.
(a) DIMS w/o diversity constraint (i.e., SparseConcate baseline), and (b)
Our approach (DiIMS). We show the top 10 segments generated using 10%
summary length. As can be seen from (a), SparseConcate baseline finds
redundant segments (marked with red color boarders) since it does not con-
sider diversity of multiple videos. Our approach DiMS, in contrast, generate a
more informative summary capturing different but also important information
described in the videos by exploring the complementary information.

approach is able to find the important segments from a video
collection which are comparable to manual human created
summaries (See Fig. 1). (2) Surprisingly, the performance of
SubMod baseline is superior compared to MultiVideoCon-
tent. It is probably because SubMod considers both interest-
ingness and representativeness in summarizing videos whereas
the later one only optimizes for representativeness which may
leave out some interesting segments in the summary. (3) Our
method overall produces better summaries by optimizing all
the important criteria of a video summary as explained earlier.
However, it has a lower performance for certain videos, e.g.,
videos of the topic “Burj Khalifa”. These videos contain fast
motion and subtle semantics that define important segments of
the video, such as opening the parachute or a nice panning shot
from the top of the building. We believe these are difficult to
capture without an additional semantic analysis [47]; we leave
this as an interesting future work.

Performance Analysis with C3D Features: We investigate
the importance and reliability of C3D features by comparing
with 2D segment-level deep features, and found that the later
produces inferior results, with a mean F-measure of 0.572
compared to 0.613 by the C3D features. We utilize Pycaffe
with the VGG net pretrained model [66] to extract a 4096-dim
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&g--

) DiMS w/o Interestingness Prior

(b) Our approach (DiMS)

Fig. 3. Role of interestingness prior in summarizing videos of Sydney Opera
House. (a) DIMS w/o interestingness prior (by setting Q") = I in problem
(7)), and (b) Our approach (DiMS). We show the top segments generated using
10% summary length. As can be seen, optimizing only for representativeness
misses some crucial segments (e.g., the girl taking a photo by pointing to
the opera house or segments showing several persons roaming around the
house), which are indeed captured in our summary by jointly considering
both representativeness and interestingness in the sparse optimization.

feature vector of a frame and then use temporal mean pooling
to compute a single segment-level feature vector, similar to
C3D features described in Sec. III-A. The spatio-temporal
C3D features perform best, as they exploit the temporal aspects
of activities typically shown in videos.

Performance Analysis with Interestingness Prior: To better
understand the contribution of interestingness prior in summa-
rizing videos, we analyzed the performance of the proposed
approach by setting Q") = I in problem (7), where I denote
the identity matrix of appropriate dimension. By turning off the
interestingness prior, the mean F-measure decreases to 0.556.
This is due to the fact that sparse representative selection
in (3) only consider reconstruction capability and sparsity in
summarizing videos. Optimizing only for representativeness
risks leaving out some crucial segment(s) which are indeed
captured in the summary by combining both interestingness
and representativeness in summarizing videos (See Fig. 3 for
an example). So, we conjecture that interestingness is also
an important factor in summarization to generate a more
condensed, descriptive and aesthetically pleasing summary.

Performance Analysis with Diversity Constraint: Fig. 2
shows the advantage of our proposed diversity regularization
in summarizing videos of Taj Mahal. By turning off
the diversity constraint (i.e., SparseConcate baseline),
the mean F-measure decreases from 0.613 to 0.503
on Tour20 dataset. Furthermore, we also compare our
approach with importance weighted clustering methods [14],
[49], ie., ConcateWKmeans, ConcateWSpectral,
KmeansWConcate and SpectralWConcate to explicitly
show the advantage of our diversity constraint in generating
informative summaries. We use the interestingness score of
each video segment for weighting the segment-level C3D
features and then perform clustering on the feature weighted
space to generate video summaries [14], [49], [11]. We use the
same method [26] to compute the interestingness score of each
video segment—such a setting gives a fair comparison in our
experiments. Table III shows the comparison with importance
weighted clustering methods on Tour20 dataset. We have
the following key findings from Table III: The performance
of importance weighted clustering methods are superior

TABLE III
COMPARISON WITH IMPORTANCE WEIGHTED CLUSTERING METHODS.
NUMBERS SHOW MEAN F-MEASURES AT 10% SUMMARY LENGTH.

[ F-measure [[ ConcateWKmeans| ConcateWSpectral] KmeansWConcatd SpectraWConcate] DiMS |
[“mean 11 0.426 [ 8 [ 0472 [ 0.483 0613 |

compared to the classical K-means and spectral clustering (a
maximum improvement of about 3%). This is expected since
the weighted version of K-means and spectral clustering use
the interestingness prior while summarizing videos. However,
the proposed method, DiIMS still outperforms these methods
by a significant margin which again shows the advantage of
our proposed diversity regularization in selecting informative
and diverse segments from a video collection.

Performance Analyis with SLH Algorithm: We examined
the performance of our approach using cosine similarity in-
stead of SLH algorithm in computing segment-level correla-
tions and found that the later produces inferior results, with
a mean F-measure of 0.471 compared to 0.613 with the SLH
algorithm. We kept all the parameters fixed in both of the
case. This is probably because SLH algorithm tries to maintain
the consistency in computing inter-video correlations via the
exclusion principle [63], [69] which preserves the spatial
arrangement of each video in computing such correlations. On
the other hand, cosine similarity does not obey the exclusion
principle which results in removing some crucial segments in
the summary. However, we also believe that learning these cor-
relations (as a future work) via a Siamese network or multiple
kernel learning will further enhance our performances.

B. Multi-View Video Summarization in a Camera Network

Goal: This experiment aims at evaluating our proposed
framework in summarizing multi-view videos captured using
a network of cameras with considerable overlapping field of
views. Such a summary can be very beneficial in surveillance
systems equipped in offices, banks, factories, and crossroads
of cities, for obtaining significant information in short time.

Datasets: We conduct experiments using three publicly
available datasets®: (i) Office dataset captured with 4 stably-
held web cameras in an indoor environment, (ii) Campus
dataset taken with 4 hand-held ordinary video cameras in an
outdoor scene, (iii) Lobby dataset captured with 3 cameras in
a large lobby area.

Performance Measures. We use three quantitative mea-
sures on all experiments, including Precision, Recall and F-
measure [20], [36]. For all these metrics, the higher value
indicates better summarization quality.

Compared Methods. We contrast our approach with total
of ten existing approaches including seven baseline methods
(ConcateKmeans [1], ConcateSpectral [72], ConcateS-
parse [18], KmeansConcate [1], SpectralConcate [72],
SparseConcate [18], Graph [59]) that use single-view sum-
marization approach over multi-view videos to generate sum-
mary and four state-of-the-art methods (RandomWalk [20],
RoughSets [40], BipartiteOPF [36]) which are specifically
designed for multi-view video summarization. Similar to the
experiments in topic-oriented video summarization, the first

6[Online] Available: http://cs.nju.edu.cn/ywguo/summarization.html
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TABLE IV
PERFORMANCE COMPARISON WITH SEVERAL BASELINES INCLUDING BOTH SINGLE AND MULTI-VIEW METHODS APPLIED ON THE THREE MULTI-VIEW
DATASETS. ALL THE REPORTED VALUES ARE IN PERCENTAGE. OURS PERFORM THE BEST.

Office Campus Lobby
Methods Precision Recall F —measure Precision Recall F —measure Precsion Recall F —measure
ConcateKmeans 100 38 55.07 55 41 47.06 85 67 75.05
ConcateSpectral 100 54 66.99 59 45 50.93 93 65 76.69
ConcateSparse 100 46 63.01 62 55 58.61 86 70 77.18
KmeansConcate 100 53 68.17 56 55 55.70 91 70 78.75
SpectralConcate 100 50 66.67 54 52 52.63 88 70 77.93
SparseConcate 93 58 71.30 56 62 58.63 97 67 79.45
Graph 100 50 66.67 56 48 51.86 91 67 77.33
RandomWalk 100 61 75.77 70 55 61.56 100 71 86.81
RoughSets 100 61 75.77 69 57 62.14 97 74 84.17
BipartiteOPF 100 69 81.79 75 69 71.82 100 79 88.26
DiMS(ours) 100 77 86.91 83 69 75.47 100 86 92.52

View #3

View #2

View #1

= Time

Fig. 4. Some summarized events for the Lobby dataset. X-axis denotes the time line as per the ground truth and the Y-axis represent the view (camera) from
which the event is detected. Each event is represented by a key frame and an event number. The sequence of events in our summary are: E1: Five persons
walk across the lobby towards the gate; a man runs to the gate, E2: Two men walks across the lobby towards the gate, and a man walks into the lobby, E3:
A man run into the lobby from the gate, E4: Four persons walk into the lobby from the gate, ES: A man walks across the lobby towards the gate, E6: Three
men are walking across the lobby towards the gate, E9: A man plays a ball with a baby, E11: A woman wearing a white coat walks across the lobby towards
the gate, E12: A woman with a white coat passes away while a man is playing with a baby, E13: A man throws the ball towards the baby, E14: Two women
and a man walk across the lobby from the gate, E15: A man plays a ball with a baby, a man with a black coat passes away.

Fig. 5. Sequence of events detected related to activities of a member (Ag)
inside the Office dataset. Top row: Summary produced by method [20], and
Bottom row: Summary produced by our approach. Sequence of events detected
in top row: 1st: Ag enters the room, 2nd: Ay sits in cubicle 1, 3rd: A leaves
the room. Sequence of events detected in bottom row: 1st: Ay enters the room,
2nd: Ay sits in cubicle 1, 3rd: Ay is looking for a thick book to read (as per
the ground truth in [20]), and 4th: A( leaves the room. The event of looking
for a thick book to read (as per the ground truth in [20]) is missing in the
summary produced by method [20] where as it is correctly detected by our
approach (3rd frame: bottom row). This indicates our method captures video
semantics in more informative way compared to [20].

seven single-view baselines generate a multi-view summary
by either applying the method to each video separately or
concatenating all the videos into a single video.

Experimental Settings. We set the same summary length as
in [20] to generate our summaries and then employ the ground
truth of events reported in [20] to compute the performance
measures. We implement all the single-video summarization
methods with the same video segmentation and feature repre-
sentation as ours, whereas for the multi-view methods, we
use prior published numbers when possible. In particular,
for the multi-view summarization methods (RandomWalk,
BipartiteOPF), we report the available results from the corre-

sponding papers and implement RoughSets ourselves using
the same video representation as the proposed one and tune
their parameters to have the best performance.

Comparision with Single-View Baseline Methods: Table IV
shows the results on three multi-view datasets, namely Office,
Campus and Lobby datasets. We have the following observa-
tions from Table IV: (1) As expected, summaries produced
using the single video-summarization methods, including the
graph clustering based method (Graph) contain a lot of
redundancies (simultaneous presence of most of the events)
since they fail to exploit the complicated interview content
correlations present in multi-view videos. (2) By using our
diversity-aware sparse optimization method, such redundancy
is largely reduced in contrast. Our proposed framework sig-
nificantly outperforms all the single-view baseline methods in
terms of precision, recall and F-measure due to its ability to
model multi-view correlations.

Comparision with State-of-the-art Methods: While compar-
ing with state-of-the-art multi-view summarization methods,
we have the following observations from Table IV: (1)
Our approach produces summaries with same precision as
RandowWalk and BipartiteOPF for both Office and Lobby
datasets. However, the improvement in recall value indicates
the ability of our method in keeping more important infor-
mation in the summary compared to both of the approaches
(See Fig. 5 for one such example). The performance improve-
ments over the recently published baseline BipartiteOPF, on
three datasets are 5.12%, 3.65%, 4.26% in terms F-measure,
respectively. (2) Notice that for all methods, including ours,
performance on Campus dataset is not that good as compared
to other two datasets. This is obvious since the Campus dataset
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contains many trivial events as it was captured in an outdoor
environment, thus making the summarization more difficult.
Nevertheless, for this challenging dataset, F-measure of our
approach is about 4% better than that of the recent Biparti-
teOPF and 14% better than that of RandomWalk. Overall,
on all datasets, our approach outperforms all the baselines
in terms of F-measure. This corroborates the fact that our
approach produces more informative multi-view summaries in
contrast to the state-of-the-art methods. We present a part of
the summarized events for the Lobby dataset in Fig. 4.

Scalability in Generating Summaries: Scalability in gener-
ating summaries of different length has shown to be effective
while summarizing single videos [29], [57]. However, most
of the previous multi-video summarization methods [42], [36]
require the number of representative segments to be specified
before generating the summaries which is highly undesirable
in practical applications. Concretely speaking, the algorithm
need to be rerun for each change in the number of repre-
sentative segments that the user want to see in the summary.
By contrast, our approach provides scalability in generating
summaries of different length based on the user constraints
without any further analysis of the input videos, similar to [29].
This is due to the fact that a ranked list of video segments
can be generated after the alternating minimization which can
produce summaries of desired length without incurring any
additional cost. Such a scalability property makes our approach
more suitable in providing human-machine interface where the
summary length is changed as per the user request. Fig. 6
shows the generated summaries of length 3, 4 and 7 most
important events for the Office dataset.

User Length Request : 3 events User Length Request : 4 events

User Length Request : 7 events

Fig. 6. The figure shows an illustrative example of scalability in generating
summaries of different length based on the user constraints for the Office
dataset. Each video segment is represented by a key frame and are arranged
according to the summary generation rules mentioned in Sec. III-C.

VI. CONCLUSIONS AND FUTURE WORKS

We present an unsupervised framework for multi-video
summarization by exploring the complementarity within the
videos. We achieve this by developing a diversity-aware
sparse optimization method that jointly summarizes a set
of videos to find a single summary that is both interesting
and representativeness of the input video collection. We also
introduced a new dataset, Tour20, along with clear ground
truth summaries to evaluate summarization algorithms in a
fast and repeatable manner. We obtain excellent experimental
results in two video summarization tasks such as topic-oriented
video summarization and multi-view video summarization in
a camera network, showing that our approach generates high
quality summaries compared to the state-of-the-art methods.

In our current work, we assume that videos given by a web
search are relevant to the topic. However, in most practical

cases, videos retrieved from search engines with topic name
as a query may contain outliers and irrelevant videos due to
inaccurate query text and polysemy. One feasible choice is
to use either clustering [30] or additional video meta data to
refine the results. Using active learning or deep CNNs [21]
to get a set of topic-relevant videos is also another possibility
in this regard. Moving forward, we would like to improve
our method by using clustering [30] to handle such real-
world scenarios while summarizing topic-related web videos.
Moreover, we would like to improve our method by utilizing
other types of metadata (e.g., social media images, comments,
audio) while summarizing web videos.
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