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Abstract—Most traditional video summarization methods are
designed to generate effective summaries for single-view videos,
and thus they cannot fully exploit the complicated intra and
inter-view correlations in summarizing multi-view videos in a
camera network. In this paper, with the aim of summarizing
multi-view videos, we introduce a novel unsupervised framework
via joint embedding and sparse representative selection. The
objective function is two-fold. The first is to capture the multi-
view correlations via an embedding, which helps in extracting
a diverse set of representatives. The second is to use a (-
norm to model the sparsity while selecting representative shots
for the summary. We propose to jointly optimize both of the
objectives, such that embedding can not only characterize the
correlations, but also indicate the requirements of sparse repre-
sentative selection. We present an efficient alternating algorithm
based on half-quadratic minimization to solve the proposed
non-smooth and non-convex objective with convergence analysis.
A Kkey advantage of the proposed approach with respect to
the state-of-the-art is that it can summarize multi-view videos
without assuming any prior correspondences/alignment between
them, e.g., uncalibrated camera networks. Rigorous experiments
on several multi-view datasets demonstrate that our approach
clearly outperforms the state-of-the-art methods.

Index Terms—Video summarization; Camera Network; Sparse
optimization; Multi-view video.

I. INTRODUCTION

ETWORK of surveillance cameras are everywhere nowa-
days. The volume of data collected by such network of
vision sensors deployed in many settings ranging from security
needs to environmental monitoring clearly meets the require-
ments of big data [24], [55]. The difficulties in analyzing and
processing such big video data is apparent whenever there is
an incident that requires foraging through vast video archives
to identify events of interest. As a result, video summarization,
that automatically extract a brief yet informative summary of
these videos has attracted intense attention in the recent years.
Although video summarization has been extensively studied
during the past few years, many previous methods mainly
focused on developing a variety of ways to summarize single-
view videos in form of a key-frame sequence or a video
skim [53], [11], [70], [9], [27], [26], [29]. However, another
important problem and rarely addressed in this context is to
find an informative summary from multi-view videos [14],
[33], [43], [28], [44]. Multi-view video summarization refers to
the problem of summarization that seeks to take a set of input
videos captured from different cameras focusing on roughly the
same fields-of-view (fov) from different viewpoints and produce
a video synopsis or key-frame sequence that presents the most
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Fig. 1. An illustration of a multi-view camera network where six cameras Cj,
Cy, ..., Cg are observing an area (black rectangle) from different viewpoints.
Since the views are roughly overlapping, information correlations across
multiple views along with correlations in each view should be taken into
account for generating a concise multi-view summary.

important portions of the inputs within a short duration (See
Fig. 1). In this paper, given a set of videos and its shots, we
focus on developing an unsupervised approach for selecting a
subset of shots that constitute the multi-view summary. Such a
summary can be very beneficial in many surveillance systems
equipped in offices, banks, factories, and crossroads of cities,
for obtaining significant information in short time.

Multi-view video summarization is different from single-
video summarization in two important ways. First, although
the amount of multi-view data is immensely challenging, there
is a certain structure underlying it. Specifically, there is large
amount of correlations in the data due to the locations and
fields of view of the cameras. So, content correlations as well
as discrepancies among different videos need to be properly
modeled for obtaining an informative summary. Second, these
videos are captured with different view angles, and depth of
fields, for the same scenery, resulting in a number of unaligned
videos. Hence, difference in illumination, pose, view angle and
synchronization issues pose a great challenge in summarizing
these videos. So, methods that attempt to extract summary
from single-view videos usually do not produce an optimal
set of representatives while summarizing multi-view videos.

To address the challenges encountered in a camera network,
we propose a novel multi-view video summarization method,
which has the following advantages.

o First, to better characterize the multi-view structure, we
project the data points into a latent embedding which is able
to preserve both intra and inter-view correlations without
assuming any prior correspondences/alignment between the
multi-view videos, e.g., uncalibrated camera networks. Our
underlying idea hinges upon the basic concept of subspace
learning [6], [41], which typically aims to obtain a latent
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subspace shared by multiple views by assuming that these
views are generated from this subspace.

« Second, we propose a sparse representative selection method
over the learned embedding to summarize the multi-view
videos. Specifically, we formulate the task of finding sum-
maries as a sparse coding problem where the dictionary
is constrained to have a fixed basis (dictionary to be the
matrix of same data points) and the nonzero rows of sparse
coefficient matrix represent the multi-view summaries.

« Finally, to better leverage the multi-view embedding and
selection mechanism, we learn the embedding and optimal
representatives jointly. Specifically, instead of simply using
the embedding to characterize multi-view correlations and
then selection method, we propose to adaptively change
the embedding with respect to the representative selection
mechanism and unify these two objectives in forming a
joint optimization problem. With joint embedding and sparse
representative selection, our final objective function is both
non-smooth and non-convex. We present an efficient opti-
mization algorithm based on half-quadratic function theory
to solve the final objective function.

II. RELATED WORK

There is a rich body of literature in multimedia and com-
puter vision on summarizing videos in form of a key frame
sequence or a video skim (see [40], [62] for reviews).

Single-view Video Summarization. Much progress has been
made in developing a variety of ways to summarize a single-
view video in an unsupervised manner or developing su-
pervised algorithms. Various strategies have been studied,
including clustering [1], [9], [18], [57], attention model-
ing [37], saliency based linear regression model [30], super
frame segmentation [20], kernel temporal segmentation [53],
crowd-sourcing [26], energy minimization [54], [13], storyline
graphs [27], submodular maximization [19], determinantal
point process [17], [69], archetypal analysis [60], long short-
term memory [68] and maximal biclique finding [7].

Recently, there has been a growing interest in using sparse
coding (SC) to solve the problem of video summarization [11],
[70], [81, [39], [10], [38] since the sparsity and reconstruction
error term naturally fits into the problem of summarization.
In contrast to these prior works that can only summarize a
single video, we develop a novel multi-view summarization
method that jointly summarizes a set of videos to find a single
summary for describing the collection altogether.

Multi-view Video Summarization. Generating a summary
from multi-view videos is a more challenging problem due to
the inevitable thematic diversity and content overlaps within
multi-view videos than a single video. To address the chal-
lenges encountered in multi-view settings, there have been
some specifically designed approaches that use random walk
over spatio-temporal graphs [14] and rough sets [33] to sum-
marize multi-view videos. A recent work in [28] uses bipartite
matching constrained optimum path forest clustering to solve
the problem of multi-view video summarization. An online
method can also be found in [43]. However, this method relies
on inter-camera frame correspondence, which can be a very
difficult problem in uncontrolled settings. The work in [31]
and [32] also addresses a similar problem of summarization

in non-overlapping camera networks. Learning from multiple
information sources such as video tags [64], topic-related web
videos [47], [48] and non-visual data [71], [65] is also a recent
trend in multiple web video summarization.

This paper has significant differences with our previous
work in [45]. First, in [45], we proposed a static multi-view
summarization method that extracts a set of key frames to
present most important portions of the input videos in form of
story-boards. While key frames are a helpful way of indexing
videos, they are limited in that all motion information is lost.
This limits their use in many surveillance applications where
video skimming i.e., replacing all the videos by a shorter
compilation of its fragments/shots, seems better suited for
obtaining significant information in short time. In this work,
we focus on dynamic shot-based video summarization, which
not only reduces computational cost but also provides more
flexible way of representing videos by considering temporal
aspects of activities typically shown in videos. Towards this,
we propose a video representation scheme based on spatio-
temporal C3D features which have recently shown promising
results in several video recognition tasks [61], [47]. Second,
in [45], we adopt a two step approach i.e., both embed-
ding and representative selection are performed independently
while summarizing multi-view videos. By contrast, in this
work, we jointly optimize both of the objectives, such that
the embedding can not only characterizes the multi-view
structural correlations, but also indicates the requirements of
sparse representative selection. Experiments show that joint
optimization indeed improves the summarization performance
by generating more informative multi-view summaries. Third,
we conduct rigorous experiments on three additional multi-
view datasets including one large scale dataset captured with
19 surveillance cameras in an indoor setting [43]. We also
perform a subjective user study to validate the effectiveness of
our approach in generating high quality summaries for a more
efficient and engaging viewing experience. New experimenta-
tion with spatio-temporal video representation, and the joint
optimization well demonstrate the performance improvements
in the current framework for summarizing multi-view videos.

III. PROPOSED METHODOLOGY

In this section, we start by giving main notations and
definition of the multi-view summarization problem and then
present our detailed approach to summarize multi-view videos.

Notation. We use uppercase letters to denote matrices and
lowercase letters to denote vectors. For matrix A, its i-th row
and j-th column are denoted by a' and a; respectively. ||A||F is
Frobenius norm of A and ¢r(A) denote the trace of A. The £,-
norm of the vector a € R" is defined as ||a||, = (2}, la;|P)\ /P
and {y-norm is defined as [lallp = X}, la;|°. The ¢, 1-norm
can be generalized to £, ,-norm which is defined as ||All,,, =
(X7, la'||?)/P. The operator diag(.) puts a vector on the
main diagonal of a matrix.

Multi-View Video Summarization. Given a set of videos
captured with considerable overlapping fields-of-view across
multiple cameras, the goal of multi-view video summarization
is to compactly depict the input videos, distilling its most infor-
mative events into a short watchable synopsis. Specifically, it is
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composed of several video shots that represent most important
portions of the input video collection within a short duration.

Our approach can be roughly described as the set of
three main tasks, namely (i) video representation, (ii) joint
embedding and representative selection, and (iii) summary
generation. In particular, our approach works as follows. First,
we segment each video into multiple non-uniform shots using
an existing temporal segmentation algorithm and represent
each shot by a feature vector using a mean pooling scheme
over the extracted C3D features (Section III-A). Then, we
develop a novel scheme for joint embedding and representative
selection by exploiting the multi-view correlations without
assuming any prior correspondence between the videos (Sec-
tions III-B, III-C, III-D). Specifically, we formulate the task
of finding summaries as an ¢»| sparse optimization where the
nonzero rows of sparse coefficient matrix represent the relative
importance of the corresponding shots. Finally, the approach
outputs a video summary composed of the shots with the
highest importance score (Section V).

A. Video Representation

Video representation is a crucial step in summarization for
maintaining visual coherence, which in turn affects the overall
quality of a summary. It basically consists of two main steps,
namely, (i) temporal segmentation, and, (ii) feature represen-
tation. We describe these steps in the following sections.

Temporal Segmentation. Our approach starts with segment-
ing videos using an existing algorithm [7]. We segment each
video into multiple shots by measuring the amount of changes
between two consecutive frames in the RGB and HSV color
spaces. A shot boundary is determined at a certain frame when
the portion of total change is greater than 75% [7]. We added
an additional constraint to the algorithm to ensure that the
number of frames within each shot lies in the range of [32,96].
The segmented shots serve as the basic units for feature
extraction and subsequent processing to extract a summary.

Feature Representation. Recent advancement in deep fea-
ture learning has revealed that features extracted from up-
per or intermediate layers of a CNN are generic features
that have good transfer learning capabilities across different
domains [58], [25]. An advantage of using deep learning
features is that there exist accurate, large-scale datasets such
as Imagenet [56] and Sports-1M [25] from which they can
be extracted. For videos, C3D features [61] have recently
shown better performance compared to the features extracted
using each frame separately [61], [67]. We therefore extract
C3D features, by taking sets of 16 input frames, applying
3D convolutional filters, and extracting the responses at layer
FC6 as suggested in [61]. This is followed by a temporal
mean pooling scheme to maintain the local ordering structure
within a shot. Then the pooling result serves as the final
feature vector of a shot (4096 dimensional) to be used in the
sparse optimization. We will discuss the performance benefits
of employing C3D features in our experiments.

B. Multi-view Video Embedding

Consider a set of K different videos captured from different
cameras, where X®) = {xgk) e RP,i = 1,--- Ny Lk =

1,---, K. Each x; represents the feature descriptor of a video
shot in D-dimensional feature space. We represent each shot
by extracting the shot-level C3D features as described above.
As the videos are captured non-synchronously, the number of
shots in each video might be different and hence there is no
optimal one-to-one correspondence that can be assumed. We
use Ny to denote the number of shots in k-th video and N to
denote the total number of shots in all videos.

Given the multi-view videos, our goal is to find an embed-
ding for all the shots into a joint latent space while satisfying
some constraints. Specifically, we are seeking a set of em-
bedded coordinates Y% = {yl(.k) eRYi=1,---,N Lk =
1,---,K, where, d (<< D) is the dimensionality of the em-
bedding space, with the following two constraints: (1) Intra-
view correlations. The content correlations between shots of a
video should be preserved in the embedding space. (2) Inter-
view correlations. The shots from different videos with high
feature similarity should be close to each other in the resulting
embedding space as long as they do not violate the intra-view
correlations present in an individual view.

Modeling Multi-view Correlations. To achieve an embed-
ding that preserves the above two constraints, we need to
consider feature similarities between two shots in an individual
video as well as across two different videos.

Inspired by the recent success of sparse representation
coefficient based methods to compute data similarities in
subspace clustering [12], we adopt such coefficients in mod-
eling multi-view correlations. Our proposed approach has
two nice properties: (1) the similarities computed via sparse
coefficients are robust against noise and outliers since the
value not only depends on the two shots, but also depends
on other shots that belong to the same subspace, and (2)
it simultaneously carries out the adjacency construction and
similarity calculation within one step unlike kernel based
methods that usually handle these tasks independently with
optimal choice of several parameters.

Intra-view Similarities. Intra-view similarity should reflect
spatial arrangement of feature descriptors in each view. Based
on the self-expressiveness property [12] of an individual view,
each shot can be sparsely represented by a small subset of
shots that are highly correlated in the dataset. Mathematically,
for k-th view, it can be represented as

xl(k) — X(k)cl(.k), Cg;) =0, (1)

) 2 (8,8, T,

. k
where c; 15 Cin's oo and the constraint cgi) =0

eliminates the trivial solution of representing a shot with itself.
The coefficient vector cgk) should have nonzero entries for a
few shots that are correlated and zeros for the rest. However,
in (1), the representation of x; in the dictionary X is not unique
in general. Since we are interested in efficiently finding a
nontrivial sparse representation of x;, we consider the tightest

convex relaxation of the £y norm, i.e.,
min [[c¥]] st x® = x®O0 B _o (@)
It can be rewritten in matrix form for all shots in a view as

min [|CP|; st X® = xBc®) diag(c®) =0, (3)

where C*) = [cgk), c;k), - CE\IZ] is the sparse coefficient matrix
whose i-th column corresponds to the sparse representation



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, DECEMBER 20XX

of the shot xfk). The coefficient matrix obtained from the
above ] sparse optimization essentially characterizes the shot
correlations and thus it is natural to utilize as intra-view
similarities. This provides an immediate choice of the intra-
view similarity matrix as Cl.(];t)m = |C®|T where i-th row of
matrix C;ﬁ;m represents the similarities between the i-th shot
to all other shots in the view.

Inter-view Similarities. Since all cameras are focusing on
roughly the same fovs from different viewpoints, all views
have apparently a single underlying structure. Following this
assumption in a multi-view setting, we find the correlated shots
across two views on solving a similar £; sparse optimization
like in intra-view similarities. Specifically, we calculate the
pairwise similarity between m-th and n-th view by solving the
following optimization problem:

min [|CM||; st X0 = x(Wclmm), 4)

where C™" ¢ RN»*Nmis the sparse coefficient matrix whose
i-th column corresponds to the sparse representation of the shot
xl(m) using the dictionary X. Ideally, after solving the proposed
optimization problem in (4), we obtain a sparse representation
for a shot in m-th view whose nonzero elements correspond to
shots from n-th view that belong to the same subspace. Finally,
the inter-view similarity matrix between m-th and n-th view
can be represented as C™") = |Cm™|T where i-th row of

inter
matrix C"" represent similarities between i-th shot of m-th

view and rglelrother shots in the n-th view.

Objective Function. The aim of embedding is to correctly
match the proximity score between two shots x; and x; to
the score between corresponding embedded points y; and
y; respectively. Motivated by this observation, we reach the

following objective function on the embedded points Y.

FA, ¥ 5) = T ) + D Fonen¥ ", ¥)
k m,n

m#n

k k k ..
= > 3 = yOIrCh), )+
ki

- 5)
D = YR, )
i.J

m,n
m#n

where k, m and n = 1,---,K. Jna(Y®) is the cost of
preserving local correlations within x® and Finter(Y' (m), Y("))
is the cost of preserving correlations between X" and XV,
The first term says that if two shots (x(k), xs.k)) of a view

l .
are similar, which happens when Cl.(]rfzm(i, j) is larger, their
locations in the embedded space, ygk) and y;.k) should be close
to each other. Similarly, the second term tries to preserve
the inter-view correlations by bringing embedded points y§m>
and yi”) close to each other if the pairwise proximity score

(m,n) .« - . . .
C.,l.r (i, j) is high. Problem (5) can be rewritten using one

similarity matrix defined over the whole set of video shots as
FEy= > 3T = IR, j) ©)
mn i,j
where the total similarity matrix is defined as
c® Gj) ifm=n=k

(m,n) . .
C (la_]) = { intra (7)
1 (m,n), . . .
tota C;ho (i, j)  otherwise

This construction defines a NXN similarity matrix where the
diagonal blocks represent the intra-view similarities and off-
diagonal blocks represent inter-view similarities. Note that an
interesting fact about our total similarity matrix construction
in (7) is that since each ¢ optimization is solved individually,
a fast parallel computing strategy can be easily adopted for
efficiency. However, the matrix in (7) is not symmetric since
in ¢; optimization (2, 4), a shot x; can be represented as
a linear combination of some shots including x;, but x;
may not be present in the sparse representation of x;. But,
ideally, a similarity matrix should be symmetric in which shots
belonging to the same subspace should be connected to each
other. Hence, we reformulate (6) with a symmetric similarity

matrix W = Cyorar + CIT(,ml as
F)y= 3 ) ™ =y I j) ()
mn i,j

With the above formulation, we make sure that two shots
x; and x; get connected to each other either x; and x; is
in the sparse representation of the other. Furthermore, we
normalize W as w; < w;/||w;i|| to make sure the weights
in the similarity matrix are of same scale.

Given this construction, problem (8) reduces to the Lapla-
cian embedding [2] of shots defined by the similarity matrix
W. So, the optimization problem can be written as

Y* = argmin tr(YLY") )
Y, YyT=1

where L is the graph Laplacian matrix of W and [ is an
identity matrix. Minimizing (9) is a generalized eigenvector
problem and the optimal solution can be obtained by the
bottom d nonzero eigenvectors. Note that our approach is
agnostic to the choice of embedding algorithms. Our method
is based on graph Laplacian because it is one of the state-of-
the-art methods in characterizing the manifold structure and
performs satisfactorily well in several vision and multimedia
applications [15], [36], [42].

C. Sparse Representative Selection

Once the embedding is obtained, our next goal is to find an
optimal subset of all the embedded shots, such that each shot
can be described as weighted linear combination of a few of
the shots from the subset. The subset is then referred as the
informative summary of the multi-view videos. In particular,
we are trying to represent the multi-view videos by selecting
only a few representative shots. Therefore, our natural goal
is to establish a shot level sparsity which can be induced by
performing ¢| regularization on rows of the sparse coefficient
matrix [8], [11]. By introducing row sparsity regularizer, the
summarization problem can now be succinctly formulated as

min

min - 1Zlby st ¥ =YZ

(10
where ||Z]|,; = Zfil lz'|l, is the row sparsity regularizer i.e.,
sum of , norms of the rows of Z. The self-expressiveness
constraint (Y = YZ) in summarization is logical as the
representatives for summary should come from the original
frame set. Using Lagrange multipliers, (10) can be written as

min [[¥ = YZI|7: + A1 ZIl, (11)
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where A is a regularization parameter that balances the weight
of the two terms. Once (11) is solved, the representative shots
are selected as the points whose corresponding ||z'|| # 0.

Remark 1. Notice that both sparse optimizations in (3) and
(10) look similar; however, the nature of sparse regularizer in
both formulations are completely different. In (3), the objective
of ¢; regularizer is to induce element wise sparsity in a column
whereas in (10), the objective of ¢, regularizer is to induce
row level sparsity in a matrix.

Remark 2. Given non-uniform length of shots, (11) can be
modified to a weighted ¢, 1-norm based objective to consider
length of video shots while selecting representatives as

min [|Y = YZ|[7 + AQZIly, (12)
where Q = [diag(q)] and g € RN represent the temporal
length of each video shot. It is easy to see that problem (12)
favors selection of shorter video shots by assigning a lower
score via Q. In other words, problem (12) tries to minimize the
number of shots by considering the temporal length of video
shots, such that the overall objective turns to minimizing the
length of the final summary.

D. Joint Embedding and Sparse Representative Selection

We now discuss our proposed method to jointly optimize
the multi-view video embedding and sparse representation
to select a diverse set of representative shots. Specifically,
the performance of sparse representative selection is largely
determined by the effectiveness of graph Laplacian in em-
bedding learning. Hence, it is a natural choice to adaptively
change the graph Laplacian with respect to the following
sparse representative selection, such that the embedding can
not only characterizes the manifold structure, but also indicates
the requirements of sparse representative selection.

By combining the objective functions (9) and (11), the joint
objective function becomes:

min

L min tr(LYT) + (1Y = YZ||% + A|Z|lo,1)

13)
where @ > 0 is a trade-off parameter between the two
objectives. The first term of the cost function projects the
input data into a latent embedding by capturing the meaningful
structure of data, whereas the second term helps in selecting a
robust set of representatives by minimizing the reconstruction
error and the sparsity. Note that the proposed method is also
computationally efficient as the sparse representative selection
is done in the low-dimensional space by discarding the irrel-
evant part of a data point represented by a high-dimensional
feature, which can derail the representative selection process.

IV. OPTIMIZATION

The optimization problem in (13) is non-smooth and non-
convex. Solving it is thus more difficult due to the non-smooth
¢>1 norm and the additional embedding variable Y. Half-
quadratic optimization techniques [21], [22] have shown to
be effective in solving these sparse optimizations in several
vision and multimedia applications [63], [66], [S0], [35].
Motivated by such methods, we devise an iterative algorithm
to efficiently solve (13) by minimizing its augmented function

alternatively!. Specifically, if we define ¢(x) = Vx2 + € with €

being a constant, we can transform || Z]|, ; to }7", ||z"||§ + €,
according to the analysis of ¢ ;-norm in [21], [35]. With
this transformation, we can optimize (13) efficiently in an
alternative way as follows.

According to the half-quadratic theory [21], [22], [16], the
augmented cost-function of (13) can be written as

min

tr(YLYD) + o(||Y = YZ||% + Aatr(ZT PZ
Y.ZYYT=I r( )+l I r( ) (14)

where P € RV*N is a diagonal matrix, and the corresponding
i-th element is defined as

1

2 /I3 + €

where € is a smoothing term, which is usually set to be a small
constant value. With this transformation, note that the problem
(14) is convex separately with respect to Y, Z, and P. Hence,
we can solve (14) alternatively with the following three steps
with respect to Z,Y, and P, respectively.

(1) Solving for Z: For a given P and Y, solve the following
objective to estimate Z:

Pii= (15)

min a(tr(Y -YZ)Y -Y2)")+ atr(Z"PZ))  (16)

By setting derivative of (16) with respect to Z to zero, the
optimal solution can be computed by solving the following
linear system.

YTy + aP)z =YTy (17)

(2) Solving for Y: For a given P, and Z, solve the following
objective to estimate Y:

min r(YLYT) + atr(Y - YZ)Y -YZ)")
Y, Yyr'=1

. T\ T (18)

= min tr(Y(L+a(I-2Z+ZZ"))Y")
Y, YYT=1

Eq. 18 can be solved by eigen-decomposition of the matrix

(L +a(I =2Z + ZZ")). We pick up the eigenvectors corre-

sponding to the d smallest eigenvalues.

(3) Solving for P: When Z is fixed, we can update P by

employing the formulation in Eq. 15 directly.

We continue to alternately solve for Z,Y, and P until a
maximum number of iterations is reached or a predefined
threshold is reached. Since the alternating minimization can
stuck in a local minimum, it is important to have a sensible
initialization. We initialize Y by solving (9) using an Eigen
decomposition and P by an identity matrix. Experiments show
that the alternating minimization converges fast by using this
kind of initialization. In practice, we monitor the convergence
within less than 25 iterations. Therefore, the proposed method
can be applied to large scale problems in practice.

'We solve all the sparse optimization problems using Half-quadratic opti-
mization techniques [21], [22]. Due to space limitation, we only present the
optimization procedure to solve (13). However, the same procedure can be
easily extended to solve other sparse optimizations (3, 4).
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TABLE I
DATASET STATISTICS
Datasets L # Views Total Durations (Mins.) Settings Camera Type
Office 4 46:19 Indoor Fixed
Campus 4 56:43 Outdoor Non-fixed

24:42 Indoor
22:46 Outdoor
15:07 Indoor
136:10 Indoor

Fixed
Non-fixed
Fixed
Fixed

Lobby
Road
Badminton
BL-7F

www

°

V. SUMMARY GENERATION

Above, we described how we compute the optimal sparse
coefficient matrix Z by jointly optimizing the multi-view
embedding learning and sparse representative selection. We
follow the following rules to extract a multi-view summary:

(i) We first generate a weight curve using ¢, norms of the
rows in Z since it provides information about the relative
importance of the representatives for describing the whole
videos. More specifically, a video shot with higher importance
takes part in the reconstruction of many other video shots,
hence its corresponding row in Z has many nonzero elements
with large values. On the other hand, a shot with lower
importance takes part in reconstruction of fewer shots in the
whole videos, hence, its corresponding row in Z has a few
nonzero elements with smaller values. Thus, we can generate
a weight curve, where the weight measures the confidence of
the video shot to be included in the final video summary.

(ii)) We detect local maxima from the weight curve, then
extract an optimal summary of specified length from the
local maximums constrained by the weight value and full
sequence coverage assumption. Note that the shots with low
or zero weights cannot be inserted into final video summary.
Furthermore, the weigh curve in our framework allows users
to choose different number of shots in summary without
incurring additional computational cost. In contrast, many
other multi-view video summarization methods need to preset
the number of video shots that should be included in the
final summary and any change will result in a re-calculation.
Therefore, the proposed approach is scalable in generating
summaries of different lengths and hence provides more flex-
ibility for practical applications. More details on the summary
length and scalability are included in experiments.

VI. EXPERIMENTS

In this section, we present various experiments and com-
parisons to validate the effectiveness and efficiency of our
proposed algorithm in summarizing multi-view videos.

A. Datasets.

We conduct rigorous experiments using 6 multi-view
datasets with 36 videos in total, which are from [14], [43] (See
Tab. I). The datasets are captured in both indoor and outdoor
environments with overall 360 degree coverage of the scene,
making it more difficult to be summarized. All these datasets
are standard in multi-view video summarization and have been
used by the prior works [14], [28], [33]. It is important to note
that experiments in our prior work [45] was limited to only 3
datasets, whereas in the current work, we conduct experiments
on 6 datasets including BL-7F which is one of the largest
publicly available dataset for multi-view video summarization.

B. Performance Measures.

To provide an objective comparison, we compare all the
approaches using three quantitative measures, including Pre-
cision, Recall and F-measure (ZfrecisionxRecally 114] 28],
For all these metrics, the higher value indicates better summa-
rization quality. We set the same summary length as in [14]
to generate our summaries and employ the ground truth of
important events reported in [14] to compute the performance
measures. More specifically, the ground truth annotations
contain a list of events with corresponding start and end
frame for each dataset. We took an event as correctly detected
if our framework produces a video shot between the start
and end of the event. We follow the prior works [14], [28],
[43] and consider an event to be redundant if we detect the
event simultaneously from more than one camera. Such an
evaluation setting gives a fair comparison with the previous
state-of-the-art methods [14], [33], [28], [44], [45].

C. Experimental Settings.

We maintain the following conventions during all our ex-
periments. (i) All our experiments are based on unoptimized
MATLAB codes on a desktop PC with Intel(R) core(TM) i7-
4790 processor with 16 GB of DDR3 memory. We used a
NVIDIA Tesla K40 GPUs to extract the C3D features. (ii)
Each feature descriptor is L-nominalized. (iii) Determining
the intrinsic dimensionality of the embedding is an open
problem in the field of manifold learning. One common way
is to determine it by grid search. We determine it as in
most traditional approaches, such as [3]. (iv) The sparsity
regularization parameter A is computed as Apg/p and Ay is
analytically computed from the embedded points [11], (v) We
empirically set o to 0.05 and kept fixed for all results.

D. Comparison with State-of-the-art Multi-view Methods.

Goal. This experiment aims at evaluating our approach
compared to the state-of-the-art multi-view summarization
methods presented in the literature.

Compared Methods. We contrast our approach with several
state-of-the-art methods which are specifically designed for
multi-view video summarization as follows.

e RandomWalk [14]. The method first create a spatio-
temporal shot graph and then use random walk as a clustering
algorithm over the graph to extract multi-view summaries.

e RoughSets [33]. The method first adopt a SVM clas-
sifier as the key frame abstraction process and then applies
rough set to remove similar frames.

e BipartiteOPF [28]. This method first uses a bipartite
graph matching to model the inter-view correlations and
then applies optimum path forest clustering on the refined
adjacency matrix to generate multi-view summary.

e GMM [43]. An online Gaussian mixture model clustering is
first applied on each view independently and then a distributed
view selection algorithm is adopted to remove the content
redundancy in the inter-view stage.

Implementation Details. To report existing methods results,
we use prior published numbers when possible. In particular,
for the multi-view summarization methods (RandomWalk,
BipartiteOPF and GMM), we report the available results
from the corresponding papers and implement RoughSets
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TABLE I
PERFORMANCE COMPARISON WITH SEVERAL BASELINES INCLUDING BOTH SINGLE AND MULTI-VIEW METHODS APPLIED ON THE THREE MULTI-VIEW
DATASETS. P: PRECISION IN PERCENTAGE, R: RECALL IN PERCENTAGE AND F: F-MEASURE. OURS PERFORM THE BEST.

Fig. 2. Sequence of events detected related to activities of a member (Ag)
inside the Office dataset. Top row: Summary produced by method [14], and
Bottom row: Summary produced by our approach. Sequence of events detected
in top row: Ist: Ap enters the room, 2nd: A sits in cubicle 1, 3rd: Aq leaves
the room. Sequence of events detected in bottom row: 1st: Ay enters the room,
2nd: Ay sits in cubicle 1, 3rd: Ay is looking for a thick book to read (as per
the ground truth in [14]), and 4th: A( leaves the room. The event of looking
for a thick book to read (as per the ground truth in [14]) is missing in the
summary produced by method [14] where as it is correctly detected by our
approach (3rd frame: bottom row). This indicates our method captures video
semantics in a more informative way compared to [14].

ourselves using the same video representation as the proposed
one and tune their parameters to have the best performance.
Results. Table II shows the results on three multi-view
datasets, namely Office, Campus and Lobby datasets. We have
the following key observations from Table II: (i) Our approach
produces summaries with same precision as RandomWalk
and BipartiteOPF for both Office and Lobby datasets.
However, the improvement in recall value indicates the ability
of our method in keeping more important information in the
summary compared to both of the approaches. As an illustra-
tion, in Office dataset, the event of looking for a thick book by
a member while present in the cubicle is absent in the summary
produced by RandomWalk whereas it is correctly detected
by our proposed method. Fig. 2 in this connection explains
the whole sequence of events detected using our approach as
compared to RandomWalk. (ii) For all methods, including
Ours, performance on Campus dataset is not that good as
compared to the other datasets. This is obvious since the
Campus dataset contains many trivial events as it was captured
in an outdoor environment, thus making the summarization
more difficult. Nevertheless, for this challenging dataset, F-
measure of our approach is about 6% better than that of
the recent BipartiteOPF. (iii) Table II also reveals that
for all three datasets, recall is generally low compared to
precision because users usually prefer to select more extensive
summaries in ground truth, which can be verified from the
ground truth events from [14]. As a result, number of events

Office Campus Lobby
Methods P R F P R F P R F Reference
Attention-Concate 100 46 63.01 40 28 32.66 100 70 82.21 TMM2005 [37]
Sparse-Concate 100 50 66.67 56 55 55.70 91 70 78.95 TMM2012 [8]
Concate-Attention 100 38 55.07 56 48 51.86 95 72 81.98 TMM2005 [37]
Concate-Sparse 93 58 71.30 56 62 58.63 86 70 77.18 TMM2012 [8]
Graph 100 26 41.26 50 48 49.13 100 58 73.41 TCSVT2006 [51]
RandomWalk 100 61 75.77 70 55 61.56 100 77 86.81 TMM2010 [14]
RoughSets 100 61 75.77 69 57 62.14 97 74 84.17 ICIP2011 [33]
BipartiteOPF 100 69 81.79 75 69 71.82 100 79 88.26 TMM2015 [28]
Ours 100 81 89.36 84 72 77.78 100 86 92.52 Proposed
TABLE III
PERFORMANCE COMPARISON WITH GMM BASELINE ON BL-7F DATASET

Methods L Precision(%) Recall(%) F-measure(%) Reference

GMM ( 58 61 60.00 JSTSP2015 [43]

Ours 73 70 71.29 Proposed

in ground truth increases irrespective of their information
content. (iv) Overall, on the three datasets, our approach
outperforms all compared methods in terms of F-measure.
This corroborates the fact that the proposed approach produces
informative multi-view summaries in contrast to the state-of-
the-art methods (See Fig. 3 for an illustrative example).
Table III shows results of our method on a larger and more
complex BL-7F dataset captured with 19 surveillance cameras
in the 7th floor of the BarryLam Building in National Taiwan
University [43]. From Table III, it is clearly evident that our
approach significantly outperforms the recent method GMM
in generating more informative multi-view summaries. The
F-measure of our method is about 11% better than that of
GMM [43]. This indicates that the proposed method is very
effective and can be applied to large scale problems in practice.
We follow the evaluation strategy of [43] and compute the
performance measures in the unit of frames instead of events
as in Table II to make a fair comparison with the GMM baseline.

E. Comparison with Single-view Methods.

Goal. The objective of this experiment is to compare our
method with some single-view summarization approaches to
show their performance on multi-view videos. Specifically, the
purpose of comparing with single-view summarization meth-
ods is to show that techniques that attempt to find summary
from single-view videos usually do not produce an optimal set
of representatives while summarizing multiple videos.

Compared Methods. We compare our approach with
several baseline methods (Attention-Concate [37],
Sparse—Concate [8], Concate-Attention [37],
Concate-Sparse [8], Graph [51]) that use single-
video summarization approach over multi-view datasets
to generate summary. Note that in the first two baselines
(Attention-Concate, Sparse-Concate), a single-
video summarization approach is first applied to each
view and then resulting summaries are combined to form
a single summary, whereas the other three baselines
(Concate—-Attention, Concate-Sparse, Graph)
concatenate all the views into a single video and then apply a
single-video approach to summarize multi-view videos. Both
Sparse—Concate and Concate-Sparse baselines use
(11) to summarize multi-view videos with out any embedding.
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Fig. 3. Summarized events for the Office dataset. Each event is represented by a key frame and is associated with two numbers, one above and below of the
key frame. Numbers above the frame (E1, ---, E26) represent the event number whereas the numbers below (V1, ---, V4) indicate the view from which
the event is detected. Limited to the space, we only present 10 events arranged in temporal order, as per the ground truth in [14].

The purpose of comparing with these two baseline methods is
to explicitly show the advantage of our proposed multi-view
embedding in generating informative and diverse summaries
while summarizing multi-view surveillance videos.

Implementation Details. We implement
Sparse—Concate and Concate-Sparse ourselves
with the same temporal segmentation and C3D feature
representation as the proposed one whereas for rest of the
single-view summarization methods, we report the available
results from the published papers [14], [28].

Results. We have the following key findings from Table II
and Fig. 4: (i) The proposed method significantly outper-
forms all the compared single-view summarization methods
by a significant margin on all three datasets. We observe
that directly applying these methods to summarize multiple
videos produces a lot of redundant shots which deviates from
the fact that the optimal summary should be diverse and
informative in describing the multi-view concepts. (ii) It is
clearly evident from the Fig. 4 that both of the sparse repre-
sentative selection based single-view summarization methods
(Sparse-Concate and Concate—-Sparse) produce a lot
of redundancies (simultaneous presence of most of the events)
while summarizing videos on Lobby dataset. This is expected
since both of the approaches fail to exploit the complicated
inter-view content correlations present in multi-view videos.
(iii)) By using our multi-view video summarization method,
such redundancy is largely reduced in contrast. Some events
are recorded by the most informative summarized shots, while
the most important events are reserved in our summaries. The
proposed approach generates highly informative and diverse
summary in most cases, due to its ability to jointly model
multi-view correlations and sparse representative selection.

FE. Scalability in Generating Summaries.

Scalability in generating summaries of different length has
shown to be effective while summarizing single videos [23],
[46]. However, most of the prior multi-view summarization
methods require the number of shots to be specified before
generating summaries which is highly undesirable in practical
applications. Concretely speaking, the algorithm need to be
rerun for each change in the number of representative shots
that the user want to see in the summary. By contrast, our ap-
proach provides scalability in generating summaries of differ-
ent length based on user constraints without any further anal-
ysis of the input videos (analyze once, generate many). This
is due to the fact that non-zero rows of the sparse coefficient
matrix Z can generate a ranked list of representatives which
can be subsequently used to provide a scalable representation
in generating summaries of desired length without incurring

any additional cost. Such a scalability property makes our
approach more suitable in providing human-machine interface
where the summary length is changed as per the user request.
Fig. 5 shows the generated summaries of length 3, 5 and
7 most important shots (as determined by the weight curve
described in Sec. V) for Office dataset.

G. Performance Analysis with Shot-level C3D Features.

We investigate the importance and reliability of the proposed
video representation based on C3D features by comparing
with 2D shot-level deep features, and found that the later pro-
duces inferior results, with a F-measure of 84.01% averaged
over three datasets (Office, Campus and Lobby) compared to
86.55% by the C3D features. We utilize Pycaffe with the VGG
net pretrained model [59] to extract a 4096-dim feature vector
of a frame and then use temporal mean pooling to compute
a single shot-level feature vector, similar to C3D features
described in Sec. III-A. The spatio-temporal C3D features
perform best, as they exploit the temporal aspects of activities
typically shown in videos.

H. Performance Analysis with Video Segmentation.

We examined the performance of our approach by replacing
the temporal segmentation algorithm [7] by a naive approach
that uniformly divides video into several segments of equal
length. We use uniform segments with a length of 2 seconds
and kept other components fixed while generating summaries.
By using the video segmentation algorithm of [7], the proposed
approach achieves a F-measure of 86.55% averaged over three
datasets (Office, Campus and Lobby). On the other hand, with
the use of uniform length segments, our approach obtains a
mean F-measure 85.43%. This shows that our approach is
relatively robust with the change in segmentation algorithm.
Note that our proposed sparse optimization is highly flexible
to incorporate more sophisticated temporal segmentation algo-
rithms, e.g., [52] in generating video summaries—we expect
such advanced and complex video segmentation algorithms
will only benefit our proposed approach.

1. Performance Comparison with [45].

We now compare the proposed approach with [45] to explic-
itly verify the effectiveness of video representation and joint
optimization for summarizing multi-view videos. Table IV
shows the comparison with [45] on Office, Campus and Lobby
datasets. Following are the analysis of the results: (i) The
proposed framework consistently outperforms [45] on all three
datasets by a margin of about 5% in terms of F-measure (max-
imum improvement of 8% in terms of precision for the office
dataset). (ii) We improve around 3% in terms of F-measure for
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Fig. 4. Some summarized events for the Lobby dataset. Top row: summary produced by Sparse-Concate [8], Middle row: summary produced by
Concate-Sparse [8], and Bottom row: summary produced by our approach. It is clearly evident from both top and middle rows that both of the single-
view baselines produce a lot of redundant events as per the ground truth [14] while summarizing multi-view videos, however, our approach (bottom row)
produces meaningful representatives by exploiting the content correlations via an embedding. Redundant events are marked with same color borders. Note
that both Sparse-Concate and Concate-Sparse summarize multiple videos without any embedding by either applying sparse representative selection
to each video separately or concatenating all the videos into a single video. Best viewed in color.

frame:501
09:07:16

Fig. 5. The figure shows an illustrative example of scalability in generating
summaries of different length based on the user constraints for the Office
dataset. Each shot is represented by a key frame and are arranged according
to the I, norms of corresponding non-zero rows of the sparse coefficient
matrix. (a): Summary for user length request of 3, (b): Summary for user
length request of 5 and (c): Summary for user length request of 7.

the more challenging Campus dataset which demonstrates that
the current framework is more effective in summarizing videos
with outdoor scenes. (iii) We believe the best performance
in the proposed framework can be attributed to two factors
working in concert: (a) more flexible and powerful video
representation via C3D features, and (b) joint embedding
learning and sparse representative selection. Moreover, to
better understand the contribution of joint optimization, we
analyzed the performance of the proposed approach with shot-
level C3D features and a 2 step process similar to [45], and
found that the mean F-measure on three datasets (Office,
Campus and Lobby) decreases from 86.55% to 83.85%. We
believe this is because adaptively changing the graph Laplacian
with respect to the sparse representative selection helps in
better exploiting the multi-view correlations and also indicates
the requirement of optimal representative shots to be included
in the summary. It also important to note that the approach
in [45] is limited to key frame extraction only and hence
may not be suitable for many surveillance applications where

TABLE IV
F-MEASURE COMPARISON WITH [45]
Methods [ Office

[45]1 84.48
Ours 89.36

Reference

ICPR2016 [45]
Proposed

Campus

75.42
77.78

Lobby

88.26
92.52

TABLE V
USER STUDY—MEAN EXPERT RATINGS ON A SCALE OF 1 TO 10. OUR
APPROACH SIGNIFICANTLY OUTPERFORMS OTHER AUTOMATIC METHODS.

Methods [ Office Campus Lobby Road

RandomWalk 6.3 52 6.6 57 6.5
BipartiteOPF 7.1 58 7.4 6.0 72
ours 7.6 6.5 8.2 6.7 79

video skims with motion information seems better suited for
obtaining significant information in short time.

J. User Study.

With 5 study experts, we performed human evaluation of the
generated summaries to verify the results obtained from the
automatic objective evaluation with F-measure. Our objective
is to understand how an user perceive the quality of the sum-
maries according to the visual pleasantness and information
content of the system generated summary. Each study expert
watched the videos at 3x speed and were then shown 3 sets of
summaries constructed using different methods: RandoWalk,
BipartiteOPF and Ours for 5 datasets (Office, Campus,
Lobby, Road and Badminton). Study experts were asked to rate
the overall quality of each summary by assigning a rating from
1 to 10, where 1 corresponded to “The generated summary is
not at all informative” and 10 corresponded to “The summary
very well describes all the information present in the original
videos and also visually pleasant to watch”. The summaries
were shown in random order without revealing the identity
of each method and the audio track was not included to
ensure that the subjects chose the rating based solely on visual
stimuli. The results are summarized in Table V. Similar to the
objective evaluation, our approach significantly outperforms
both of the methods (RandomWalk, BipartiteOPF). This
again corroborates the fact that the proposed framework gen-
erates a more informative and diverse multi-view summary
as compared to the state-of-the-art methods. Furthermore, we
note that the relative rank of the different algorithms is largely
preserved in the subjective user study as compared to the
objective evaluation in Table II.
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K. Discussions.

Abnormal Event Detection. Abnormal event detection and
surveillance video summarization are two closely related prob-
lem in computer vision and multimedia. In a surveillance
setting, where an abnormal event took place, the proposed ap-
proach can select shots to represent the abnormal event in the
final summary. This is due to the fact that our approach selects
representative shots from the mult-view videos such that set
of videos should be reconstructed with high accuracy using
the extracted summary. Specifically, the proposed approach
in (13) favors selecting a set of shots as representatives for
constructing the summary which can reconstruct all the events
in the input with low reconstruction error. Consider a simple
example for an illustration. Let us assume a surveillance
setting equipped in a place with only pedestrian traffic. People
are walking as usual and suddenly, a car is speeding. In
order to reconstruct the part where the car is speeding, our
method will choose a few shots from this portion; otherwise
the reconstruction error will be high.

Multi-View Event Capture. In general, the purpose of
overlapping-field of view is to facilitate users to check ob-
jects/events from different angles. For an event captured with
multiple cameras having a large difference in view angles,
the proposed method often selects more than one shot to
represent the event in the summary. This is due to the fact that
our approach selects representative shots from the multi-view
videos such that the whole input can be reconstructed with low
error. In our experiments, we have observed a similar situation
while summarizing videos on Campus dataset. The summary
produced by our approach contains three shots captured with
cameras 1, 3, and 4 in an outdoor environment which essen-
tially represent the same event (E23 in the ground truth [14]).
However, note that although including shots representing same
event from more than one camera in the summary may help
an user to check events from different angles, it increases
the summary length which often deviates from the fact that
length of the summary should be as small as possible. Thus,
the objective of our current work is on generating an optimal
summary that balances the two main important criteria of a
good summary, i.e., maximizing the information content via
representativeness and minimizing the length via sparsity.

Joint Video Segmentation and Summarization. Note that the
proposed approach uses temporal video segmentation as a
preprocessing step and then use the shot-level features to
extract summaries. Our approach can be modified in two
ways to optimize the temporal segmentation for the task
of video summarization. First, involving a human in our
current approach for giving feedbacks, similar to the concept
of relative attributes in visual recognition [49] can help us
in adaptively changing the shot boundaries for generating
better quality summaries. Second, learning a dynamic agent
using Markov decision process (MDP) for moving the shot
boundaries (forward or backward with temporal increments)
based on the performance of our proposed summarization
algorithm is also a possibility in this regard [4]. Developing an
efficient framework for joint segmentation and summarization
is an interesting practical problem—we leave this as future
work, with no existing work, to the best of our knowledge.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed the problem of summarizing
multi-view videos via joint embedding learning and £>,; sparse
optimization. The embedding helps is capturing content corre-
lations in multi-view datasets without assuming any prior cor-
respondence between the individual videos. On the other hand,
the sparse representative selection helps in generating multi-
view summaries as per user length request without requiring
additional computational cost. Performance comparisons on
six standard multi-view datasets show marked improvement
over some mono-view summarization approaches as well as
state-of-the-art multi-view summarization methods.

Moving forward, we would like to improve our method by
explicitly incorporating video semantics that may require more
complex model with additional techniques such as attention
modeling [37] or semantic feature analysis based on user
preferences [34]. It is also important to note that unlike
single-view videos, understanding semantics in a multi-camera
environment is a challenging problem and hence, one may
also require data association strategies, e.g, [5] to properly
exploit multi-view video semantics for the task of video
summarization. Moreover in future, we would like to consider
the fact that more than one camera view may be necessary to
fully represent an event (e.g., due to occlusion) in a multi-view
setting and hence, it may be necessary to include multiple
similar shots representing same events from more than one
camera for generating a good quality video summary.
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