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Abstract

Constructing a feature representation invariant to cer-
tain types of geometric and photometric transformations is
of significant importance in many computer vision applica-
tions. In spite of significant effort, developing invariant fea-
ture representations remains a challenging problem. Most
of the existing representations often fail to satisfy the long-
term repeatability requirements of specific applications like
vision-based localization, applications whose domain in-
cludes significant, non-uniform illumination and environ-
mental changes. To these ends, we explore the use of natural
image pairs (i.e. images captured of the same location but
at different times) as an additional source of supervision to
generate an improved feature representation for the task of
vision-based localization. Specifically, we resort to training
deep denoising autoencoder, with CNN feature representa-
tion of one image in the pair being treated as a noisy version
of the other. The resulting system thereby learns localiza-
tion features which are both discriminative and invariant
to illumination and environmental changes. In experiments
tailored towards vision-based localization, features gener-
ated using the proposed method produced higher matching
rates than state-of-the-art image features.

1. Introduction
Capturing good visual representations from images is

of crucial importance in computer vision. Traditionally, a
number of hand-engineered feature extraction methods such
as SIFT [30], HOG [12] and SURF [7] have been developed
to find distinctive features that could be considered an un-
derlying visual representation. Over the last few years, there
has been significant interest in learning rich visual represen-
tation directly using deep neural networks [53] leveraging
massive amounts of labeled data. Many feature extraction
methods aim to achieve a certain level of invariance to dif-
ferent transformations, such as affine and lighting changes.
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Figure 1: Each row represents the same place imaged at two differ-
ent times. The goal is to identify features in the images that would
allow us to determine with high confidence that these are pictures
of the same location.

Operations like orientation histogram binning in SIFT/HOG
and pooling and convolution operations in CNNs are de-
signed to achieve invariance to small affine transformations
[21]. Data augmentation is another commonly used tech-
nique with feature learning which can achieve a limited
degree of invariance to certain transformations. However,
most of these representations fail to satisfy long-term re-
peatability requirements of specific applications like vision-
based localization.

Vision-based localization approaches usually attempt to
provide a long-term and cost-effective alternative modal-
ity to GPS [5, 8]. These localization systems usually fol-
low a well-defined pipeline [31]. First, the perception sys-
tem constructs an environmental map based on the unique,
or at least, distinctive features visible at various locations
of the route to be mapped. Thus, the distinctive features
become associated with distinctive locations. Next, when
a new image is presented to the system, the system tries
to match the features associated with this location-coupled
image with the database (i.e. map) of previously detected
image features. The challenges of this task are many and
include viewpoint changes, dynamic aspects of the en-
vironment (pedestrians, vehicles, etc.), sensor and model
noise, changes due to the seasons, and illumination variance



(Fig.1). Furthermore, many locations might not have visu-
ally distinctive features. Hence, existing feature descriptors
fail to provide a level of long-term invariance to environ-
mental factors, like illumination, necessary for widespread
application in tasks such as location re-identification. This
limits the applicability of such approaches to fair-weather
scenes during a limited time window, typically during the
day.

Ideally, we wish to generate a feature descriptor, such
as through the discovery of common patterns in images,
which is invariant to environmental changes, like illumina-
tion, that happen over extended time periods, like different
times of the day. The complete space of transformations
between images taken at the same location but at different
times is unknown and likely non-uniform. Hence it is likely
intractable to develop physics-based approaches which can
accurately model such changes. There is evidence to sug-
gest that humans typically re-identify the same location at a
different time by discovering invariant patterns in the scene
as well as models of how the patterns change over time [6]
based on experience. We pose the question as to whether a
learning-based method can be used to develop the same.

Building upon the successes of deep learning methods
for feature extraction in images, we propose the use of a
stacked autoencoder [50, 51] for solving this problem. We
aim to model the complex non-linear transform between
the images of same location through a stacked autoencoder,
considering its ability to handle non-linear transforms. By
considering one of the images at a particular location as a
noisy version of the other at the same location, our approach
can be framed in the context of a denoising autoencoder
(DA), which takes a partially corrupted input whilst training
to recover the original undistorted input. While in a stan-
dard DA, a predefined stochastic corruption process is ap-
plied on the input data to generate the corrupted version of
input, we assume there is an unknown non-linear stochastic
mapping that exists between the images of same location.
By training on such corresponding data pairs, the model
tries to learn discriminating features for the target task and is
able to gain invariance to meaningful transformations (e.g.
illumination, occlusions, sky appearance, etc). This model
encodes the simplifying assumption that the appearance of
different locations changes uniformly, regardless of the en-
vironment, and thus changes learned during training can be
generalized to previously unseen locations.

This paper also introduces a dataset, which contains
image pairs captured by driving through urban and sub-
urban environments during different times of day; we
shall refer to this dataset as the Localization in Chang-
ing Environment (LCE) dataset. We train our models
by combining multiple datasets, including LCE dataset,
CMU Visual localization (CMU VL) dataset [5], Web-
cam Clip Art database(WebcamDB) [25] and Phos dataset

[52]. Experiments demonstrate the effectiveness of our pro-
posed approach in illumination invariant feature extraction.
Our learned model is not only generalizable across these
datasets, but also shows excellent cross-dataset generaliza-
tion performance in other held-out localization datasets, i.e.,
St Lucia [18], Nordland [44], Oxford Robocar [32] datasets.
Hence, this work could be a precursor to semantic localiza-
tion or a pre-processing step for finer-grade localization.

2. Related Work
Vision-based Localization. The authors in [31] and [16]

offer comprehensive reviews on state-of-the-art approaches
to vision-based localization. Vision-based methods usually
localize [3, 20, 29, 41] or categorize [38, 40, 54] an image
given a database of geo-referenced images or video streams
[5, 28, 2]. Significant work has been done in recent years
towards developing hand-designed feature descriptor-based
localization systems [11, 26]. However, It has been ob-
served that SURF and SIFT features [15, 49] are not ro-
bust to long-term and non-uniform illumination changes.
On the contrary, global image descriptors, like GIST suf-
fer from high sensitivity to viewpoint change [31, 35]. Fea-
tures learned from deep neural networks have recently been
used as robust feature extractors for visual localization. Mo-
tivated by their ability to learn generic features that are
transferable to a variety of related but different visual tasks
[42, 37], the authors of [10, 45, 46] utilized CNN features
as holistic image descriptors and analyzed the robustness
of different layers against visual appearance and viewpoint
changes. They concluded that mid-level features are rel-
atively more robust against change in appearance, while
higher level features exhibit robustness against viewpoint
changes [45]. Hence, the pre-trained CNN features may
not be optimal for vision-based localization, as they are not
specifically designed for the task. In contrast to existing
works, which hinge on existing features to develop a visual
localization method, our feature extraction method is tai-
lored to achieve a high level of invariance for vision-based
localization task.

Learning Correspondence. Most relevant to our work
are methods which train with pairs of transformed images
and infer an implicit representation for the transformation
itself [21, 33, 34, 39]. In [33], to encode transformation
between image pairs, bilinear models have been used and
content independent motion feature was learned. The gated
autoencoder has been turned into a recurrent network for se-
quence prediction in video in [34]. To predict future frames,
recurrent neural networks have been demonstrated in [39].
These methods mainly aim to relate two temporally or spa-
tially related images, however we aim to learn a represen-
tation for individual images which is invariant to common
changes in a scene over time. Other relevant works in-
clude [1, 9], in which features have been learned for the



place recognition task. [9] considered place recognition as
a classification problem and trained a CNN with thousands
of images of a number of specific places. Another related
work is [1], which designed a layer named NetVLAD and
trained with CNN feature extraction in a relevant task of
place recognition. This approach has shown good perfor-
mance in recognition tasks. However, the uncertainty in the
localization that these methods can tolerate is much higher
(tens of meters) than our application (visual localization)
permits, whereas more useful results occur at the decimeter
level of accuracy. Place recognition systems usually assume
that the places in the map are disjoint and their views do not
overlap. Hence, feature extracted from these networks may
not be optimal for visual localization task.

3. Methodology
Overview. Fig 3 summarizes our proposed framework

for illumination-invariant feature learning and the frame-
work for using these learned features in a localization task.
In our framework, we try to learn a feature representation
which is invariant to appearance changes of a scene at dif-
ferent times. We assume that the training set is an exhaus-
tive collection of possible changes in illumination condi-
tions and not dependent on specific locations; thus, features
learned during training can be generalized to previously un-
seen locations. The main idea is to train a DA by trying to
recover the visual representation of one frame from another,
which was captured at the same location but at a different
time.

Once training has been completed, the trained network
can then be applied to feature extraction tasks. We assume
the database contains feature representation for every loca-
tion along the route captured by the camera. When a new
image arrives, feature representation for this sample is ex-
tracted using our trained network. Then, this feature is com-
pared to features stored in the database to generate putative
matches. In case of time-sequence data, a short time win-
dow around each location candidate is analyzed to select
that match with the highest temporal consistency. Other-
wise, the image with highest similarity is selected.

3.1. Feature Learning using Denoising Autoencoder

Basics of the DA. An autoencoder is a feed-forward neu-
ral network used for unsupervised learning of efficient rep-
resentation for a set of data. A classical autoencoder takes
the input x and maps it (with encoder) onto a hidden rep-
resentation h(x) through a deterministic mapping. h(x) is
then mapped onto the reconstruction x̂ of the same shape
as x. Then, the loss function L(x, x̂) of the autoencoder
compares the output x̂ with the initial input x. Denoising
autoencoder has been introduced with a specific approach
to learn richer representation from data. In a denoising au-
toencoder, a preliminary stochastic mapping x → x̃ is per-

formed to corrupt the data. x̃ is used as input for the au-
toencoder (Eq.1). The reconstruction x̂ is computed from
corrupted input x̃ (Eq.2). However, the loss function still
compares x̂ with the initial noiseless input x, L(x, x̂), in-
stead of L(x̃, x̂). Specifically,

h(x̃) = σ(a(x̃)) = σ(Wx̃+ b), (1)
Here, σ, W and b are parameters of encoder, where σ is
element-wise activation function, W is the weight matrix,
and b is the bias. Also,

x̂ = σ̄(W̄ ∗ h(x̃) + b̄), (2)
where, σ̄, W̄ and b̄ are parameters of decoder.

As we want to learn a shared representation between im-
ages of the same location, the objective function of the au-
toencoder is defined by the Euclidean loss of input feature
(xi) and the reconstructed feature (x̂i) with an L2 regular-
ization term, shown in Eq.3 as

argmin
W

1

2N

∑
i

‖xi − x̂i‖22 + λ‖W‖22 (3)

where, N is the size of the mini batch and λ is a hyper-
parameter to balance the loss and the regularization.

Adapting DA to Our Application. The main difference
between our proposed autoencoder and a denoising autoen-
coder is in the process of generating a corrupted version of
the input, as shown in Fig.2. In a denoising autoencoder,
a predefined stochastic corruption process is applied to the
input data to generate the corrupted version of the input.
However, we consider that the image of a particular location
is a corrupted version of another image of the same location
taken at different time. We assume there is an unknown
stochastic mapping that exists between these images, which
can be thought of as modeling environmental changes such
as illumination. Note, however, that there is no need to use
any explicit corruption process model. Thus, we can di-
rectly use available image pairs (images of same location,
but different time) as input and corrupted input. Hence, this
formulation allows us to use the same equations as the de-
noising autoencoder described above.

However, a direct application of DA is intractable due to
the high complexity of change between scenes, especially
in case of limited number of training samples. We also ob-
served this phenomenon by training convolutional autoen-
coder using our image pairs. Euclidean loss in image space
leads to averaging all the exact positions of details of im-
ages of same location and results in a high training loss. We
believe that distribution of the details are sufficient for per-
ceptual similarity in feature representation. Hence, instead
of directly using images for training autoencoder, we use
deep CNN feature extracted on image pairs as input to the
autoencoder. This is done since improving a feature repre-
sentation for achieving desired invariance is more tractable
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Figure 2: Figure illustrates basic differences between our proposed autoencoder training and traditional denoising autoencoder training.

than trying to learn long-term invariant feature representa-
tion directly from scratch. We believe that invariance to ir-
relevant transformations can be achieved by measuring dis-
tances in a suitable feature space.

We apply a deep CNN to extract initial feature represen-
tation, as they are currently the state-of-the-art image fea-
tures [27, 24]. The best performance among CNN models
has been achieved by very deep networks with a large num-
ber of layers [43, 47], but the processing time per image in
such networks can be very high. Hence, it is important to
choose a CNN model based on both accuracy and scalabil-
ity. It is worth mentioning that our method does not depend
on this particular choice of CNN, except for the scalability
issue mentioned above.

Moreover, which layer of the CNN to be chosen for ini-
tial feature extraction is also a design choice, as the mid-
level features are more robust against appearance changes,
while higher level features are more robust against changes
in viewpoint [45]. We tried features from different lay-
ers of three pre-trained CNN, i.e., Alex-Net [24], VGG-16
[43] and VGG-19 [43] for initial feature extraction. Em-
pirically, based on accuracy and computational time, we fi-
nally chose to use the last pooling layer (pool-5) feature of
Alex-Net as the input to the autoencoder. For an image i at
the input layer, we primarily extract feature xi (xi ∈ Rd,
d = 256 × 6 × 6) from pool5 layer of the CNN and flatten
it to construct a feature vector of size 9216.

We propose to use a stacked denoising autoencoder with
an architecture similar to that shown in Fig.3. Our au-
toencoder network takes the CNN feature of an image as
the input to an encoder and a decoder sequentially. The
decoder output is compared with 9216 dimensional pool5
layer CNN feature of its paired image. The encoder has two
hidden layers with 4500 and 2500 neurons, respectively,
whereas the decoder has two layers with 4500 and 9216
neurons, respectively. The small middle layers are for learn-

ing compact semantics as well as to retain only invariant de-
scriptors. We scale the input signals of the autoencoder to
bound their magnitude between 0 and 1.

3.2. Image Matching

For visual localization task, given a query image, we
need to find the most similar image from a collection of
referenced images or video streams. Hence, it is important
to choose a criterion for determining the similarity between
two samples.

Similarity Calculation. There are several metrics to cal-
culate the similarity between two samples. Here, we use
a Gaussian kernel similarity function. First, we normalize
feature vectors to have unit L2 norm. Then, given two fea-
ture vectors fq and fd, their similarity is measured as the
score Sq,d as follows:

Sq,d = exp(−‖fq − fd||
2

2σ2
) (4)

Here, ‖fq−fd||2 is the squared Euclidean distance between
the feature vectors fq and fd. We kept the free parameter σ
fixed as 1. Note that the higher the value of Sq,d, the more
similar are the two images. Particularly, if the two images
are identical, then Sq,d is 1. On the other hand, when there
is no similarity between images, Sq,d will be close to 0.

In order to retrieve the location of a query image Iq ,
we search the database for the best image match Id.
The database contains image features with corresponding
ground-truth locations. More formally, the database con-
sists of set D = {D1, D2, ....} with components Di =
(fd,i, ld,i), where fd,i is the feature descriptor vector and
ld,i is the location of the ith database image. The estimated
location ld of the image will be the image with the highest
probability within the set of all possible locations:

ld = argmax
d

(Sq,d) (5)



Figure 3: Our proposed feature learning and testing framework. Please see Section 3 for details.

Improving Performance by Sequence Search. For a
query sample fq , finding the database sample fd with maxi-
mum Sq,d usually serves as a reliable indicator of a high per-
formance match. However, in many cases, the feature with
the highest similarity S may not be from the best match-
ing location. Encouragingly, we can exploit the available,
inherent temporal information to achieve an even better re-
sult. We present a simple baseline for this approach. In
such a case, after the similarity calculation, we perform a
validation step with matching image sequences rather than
individual images to improve recognition accuracy. First,
we find top N possible matches based on similarity score
to limit the run-time of subsequent validation steps. Then,
these matches are verified based on whether they are con-
sistent over a short time interval τd (e.g. τd = 1s). If
this approach returns more than one consistent result, then
we choose that matching frame with the highest combined
similarity score over the selected time interval. The algo-
rithm for finding the best matching database image using
sequence search is presented in Algo.1.

4. Experiments
In this section, we present quantitative (Sec. 4.3) and

qualitative (Sec. 4.4) results validating our approach. We
also provide details of datasets (Sec. 4.1) and implementa-
tion details (Sec. 4.2).

4.1. Datasets

We train our model combining collected image pairs
from four datasets, e.g., CMU VL [4], WebcamDB [25],
PHOS[52] and LCE Dataset. The LCE dataset was created
by Volkswagen Electronics Research Lab. The dataset con-
tains about 4K monochrome image pairs under various il-

Algorithm 1 Find matching image in time-sequence data

Input: Database D = {D1, D2, ....} with components
Dt̂ = (fd,t̂, ld,t̂), where fd,t̂ is the feature of database
image at relative time t̂; Feature, fq,t of query Image at
time t. Time interval for sequence matching, τd

Step 1: Calculate the similarity scores Sq,d between
query Image at time t and all images in database.

Step 2: Select top N samples, with sufficiently large
similarity score for further processing.

Step 3: For each sample chosen in Step 2, a pre-
ceding sequence of frames with length of time inter-
val τd is selected from database. Then, these database
frames are compared with the frames available in τd
time interval, prior to current query frame (S(fq,t, fd,t̂),
S(fq,t−1, fd,t̂−1), S(fq,t−2, fd,t̂−2), .......) to verify,
whether they are pairwise consistent.

Step 4: If the matching score is higher than a thresh-
old (αh) for all pairs in the interval, the match is con-
sidered consistent. On the other hand, if the matching
score is below certain threshold (αL), the candidate is
rejected.

Step 5: In case of multiple consistent match, choose
the frame with highest combined similarity score in the
selected time interval.

lumination conditions, which include both urban and sub-
urban areas. We have used monochrome cameras since
most production vehicles predominately employ these, in-
stead of color cameras, due to reduced cost. In addition
to illumination and environmental variations, there are also
differences in the field of view for images captured of the
same location. We test our approach on several visual lo-



calization datasets, i.e., Nordland [44], St Lucia [18] and
Oxford Robocar dataset [32], which was not used in train-
ing. The CMU VL, LCE, St Lucia, Nordland and Oxford
Robocar dataset are localization datasets. They contain sev-
eral image sequences for the same route at different times.
We have also utilized the PHOS dataset [52] and the We-
bcamDB dataset [25] for training, which include images
captured of the same location using fixed cameras and web-
cams. Although the latter two datasets are not localization
based, they served an important purpose as added sources of
training data for fixed-field-of-view scenarios where there is
significant visual variation in the environment.

4.2. Training Details

Implementation. Our network architecture consists of
a pre-trained convolutional neural network followed by a
stacked autoencoder. We use ReLU nonlinear activations
throughout the network. The convolutional network module
follows the popular AlexNet architecture [24]. We extract
initial features from the pooling 5 layer of this CNN, fea-
tures which then serve as inputs to an autoencoder. Our
autoencoder contains 2 encoding and 2 decoding layers.
We trained the autoencoder network with objective func-
tion listed in Eq. 3 using a stochastic gradient descent with
an adaptive subgradient method called AdaGrad [14]. Ada-
Grad can adapt the rate of gradients based on the previous
updates by computing a dimension-wise learning rate. We
empirically chose to use AdaGrad after testing with Ada-
Grad, Adam [23] and RMSProp [48]. The autoencoder
layer weights were initialized using the Xavier algorithm
[17]. The Xavier initialization technique keeps the signal
in a reasonable range of values through layers by automati-
cally determining the initialization scale based on the num-
ber of input and output neurons [19]. We used a Tesla K40
GPU and implemented the network in Caffe [22].

Fig. 4. Training Loss
and validation accuracy
of models trained on fea-
tures of pool-5 layer fea-
tures of our pre-trained
CNN layer as a function
of optimization epochs.
The network converges
with a loss of 0.3265 and
validation accuracy 0.76.

Optimization. We collect image pairs from four datasets
and train our model on feature descriptors of these pairs, as
the number of pairs from a single dataset is very low. We
follow an 85% / 15% split for training image pairs vs. test-
ing. We also increase the number of training pairs using
data augmentation. To this end, we add various levels of
noise and vary the image contrast. Fig. 4 shows the learn-

ing curve and validation accuracy in training our network
as a function of epoch. The network converges at around 8
epoch. We start training with a learning rate of 0.001 and
decrease it when the training loss had reached a plateau.
For the autoencoder on the input feature pairs, we use mini-
batches of size 100. We modified the learning procedure to
handle our autoencoder training. We added a new accuracy
layer, so that we can monitor whether or not the match-
ing performance increased within the validation set. Note
that this does not directly evaluate localization accuracy, as
this would require comparing all possible locations to find
the best matching location. However, our modified accu-
racy layer allows us to evaluate what percentage of image
pairs in validation set has Gaussian similarity greater than a
threshold.

4.3. Quantitative Results and Evaluation

Let us now turn to a quantitative verification of the ro-
bustness of the proposed feature extraction approach in a
visual localization task and a comparison against state-of-
the art approaches.

Compared Methods. We compare the performance of
features extracted from our network against state-of-the-art
methods. We evaluate the performance of our approach
against extracted features from several popular CNNs. We
used fc7 layer features obtained from an pre-trained Caffe
implementation of AlexNet, VGG-16 and VGG-19 in com-
parison. We also compare our approach with a state-of-the-
art method for visual localization under significant change
in appearance, i.e., SeqSLAM[44] and place recognition
method NetVlad [1]. We used OpenSeqSLAM code to test
SeqSLAM [44]. We compare against NetVlad feature by
using high performing NetVlad network (VGG-16, fVLAD
with whitening) [1] for comparison. We adopt the same
similarity calculation technique presented in Sec. 3.2 for all
feature descriptors. Note that we could not compare with
recent method [36] as the results are not available on the ex-
perimented datasets. We did not re-implement this method
in our setting as it is very difficult to exactly emulate all the
implementation details (e.g., requirement of all man-made
structures to be labeled in images).

Evaluation Metric. The results of our proposed ap-
proach and the state-of-the-art methods are evaluated using
F-measure in Table. 1 and CMC(Cumulative Match Char-
acteristic) curve in Fig. 5. F-measure is the harmonic mean
of precision and recall and it is calculated using precision
and recall values obtained from the similarity matrices pro-
cessed in each test. On the other hand, CMC curve is a rank
based metric, which measures how well an identification
system ranks the images in the test database with respect to
an unknown probe image. In CMC curve, the probability of
observing the correct match within a rank equal to or less
than some value (y-axis) is plotted against ranks (x-axis).



Table 1: A comparison of F1-scores between our proposed method and other state-of-the-art methods on 5 datasets. We highlight the best
and underline second best baseline method.

Dataset

Feature

Alex-Net Vgg-16 Vgg-19 NetVlad SeqSlam Proposed

Held-Out 

Sets

Nordland

Winter-Summer 0.55 0.51 0.48 0.74 0.69 0.76

Winter-Spring 0 .62 0.59 0.53 0.79 0.80 0.86

Winter-Fall 0.58 0.54 0.51 0.74 0.68 0.74

Summer-Spring 0.78 0.75 0.75 0.83 0.80 0.81

Summer-Fall 0.94 0.92 0.90 0.93 0.84 0.95

Spring-Fall 0.83 0.77 0.76 0.83 0.79 0.86

St Lucia

Average 0.54 0.56 0.51 0.52 0.47 0.61

Worst Trial 0.33 0.37 0.29 0.18 0.27 0.43

Oxford

Average 0.64 0.62 0.62 0.62 0.41 0.67

Worst Trial 0.54 0.43 0.48 0.23 0.14 0.46

Training 

Sets

CMU VL Average 0.92 0.96 0.95 0.85 0.76 0.98

Worst Trial 0.84 0.94 0.85 0.77 0.64 0.96

LCE Average 0.58 0.60 0.59 0.73 0.47 0.78

Worst Trial 0.32 0.17 0.32 0.11 0.17 0.39

For localization datasets, a true positive is considered to be
a situation where the best match is within ±β frames of the
ground truth (β depends on the frame rate of the dataset);
a false positive is where the best match falls outside these
bounds. A false negative situation occurs where no match
is found (i.e., the feature similarity for the best matching
image pair is below certain threshold), since every scene in
each dataset has a ground truth match.

Results and Analysis. Table. 1 demonstrates that in
terms of F-measure, our method consistently outperforms
baselines in the task of visual localization in almost all the
compared datasets. For example, on the St Lucia dataset,
our trained network achieves an F1-score of 0.61 compared
to only 0.54 obtained by off-the-shelf AlexNet and 0.52 in
NetVlad. Similar performance can be observed across all
datasets.

We also show performance of our approach using CMC
plot, i.e., Fig. 5 to summarize performance of our closed-set
identification system. The proposed feature extractor shows
similar or better performance in all datasets in almost all
ranks. Although we use a simple approach for image match-
ing, our method consistently outperform SeqSLAM in al-
most all experiments. SeqSLAM depends heavily on crite-
ria that image was captured with similar speeds and minor
accelerations. Hence, the performance suffers significantly
when these condition are not met well.

We also trained a convolutional autoencoder (with pre-
trained weights of Alexnet in encoder and the decoder
weight was initialized using [13]) with all our training im-
age pairs. Feature from the best performing model achieves
F1 score of 0.91 in CMU VL, compared to 0.98 in the pro-
posed approach and F1 score of 0.56 in St Lucia, compared
to 0.61 in proposed approach. We see similar trend in all

datasets. This observation supports our assumption that a
direct application of DA for learning long-term invariance
may be intractable due to the high complexity of change
between scenes over long time.

Our trained autoencoder construct combined with base-
line features improves accuracy over just using baseline fea-
tures, thereby increasing appearance and viewpoint invari-
ance in the resulting feature vectors. These results confirm
two key premises of our work: 1) our approach can signifi-
cantly improve image representations for visual localization
and achieves better performance than conventional state-of-
the-art feature extractors in this task, and 2) the popular idea
of directly using features from pre-trained networks, e.g.,
[45, 46], can be sub-optimal since these networks, trained
for object or scene classification, might be too generic for
vision-based localization.

4.4. Qualitative Results

As an understanding aid, we now present work on vi-
sualizing what our networks learn. We follow the method
[55] for examining occlusion sensitivity of classification
networks. In this method, different portions of the image
are systematically covered up with a gray square and the
change in feature representation is monitored. Each pixel
in the heatmap corresponds to the change in representation.
It can be seen in Fig. 6 that a pre-trained AlexNet focuses
mostly on recognizing objects and shapes useful for discov-
ering different categories. In contrast, our autoencoder net-
work is trained for learning invariant representation for vi-
sual localization task; thus features can be more abstract, as
long as they are repeatable. Hence, our network learns to
assign lower importance to potentially confusing features,
such as moving objects (e.g.,cars, people), which are not
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Figure 5: A comparison of our method vs baselines and sate-of-
art methods based on Cumulative Matching Characteristic(CMC)
curve on 5 datasets. The plots show the recognition percentage
for rank 1 to 5. The corresponding dataset names are given above
each plot.

Figure 6: Figure shows one image pair from CMU-VL dataset and
one pair from LCE dataset in 1st row. The corresponding heat-
maps for the images from AlexNet and our network are shown in
2nd and 3rd row.

statically identifiable features of specific locations. Instead
the network becomes trained for invariance to illumination
and other global changes in the location.

In Fig. 7, we show some challenging queries and most

similar images to these queries based on different feature
extractors. These queries are hard for all feature extractors,
because of significant change in appearance due to change
in illumination, seasonal effect and appearance of different
non-static objects in scene. However, our feature extractor
was fairly successful in most of the cases, compared to other
state-of-the art feature based methods. The fourth query
was one case in which our approach failed. This was overall
a very difficult query. Along with non-uniform illumination
change and appearance of new different non-static objects,
the viewpoint also changed significantly.

����� ����	
��	�� ���� �
����� ����� �����

Figure 7: Example of retrieved best matching image for 5 difficult
query image from CMU VL dataset. Each row contains query
image (1st column), actual matching image(2nd column) and best
matching result based on different feature descriptor (3rd, 4th, 5th
and 6th column). The green and red border around result indicate
correct and incorrect matching, respectively.

5. Conclusions
In this paper, we presented a novel method for learn-

ing illumination invariant features for vision-based localiza-
tion. This feature extraction allows highly accurate location
recognition amidst significant scene changes. To accom-
plish invariant feature learning, we employ pairs of images
captured of the same location but at different times. These
pairs train deep neural network models to learn common-
sense understanding of how locations change appearance
over time. Specifically, the model is tuned to extract dis-
criminative features specific to a particular location, fea-
tures with invariance to common changes in scene appear-
ance, such as illumination, occlusion, sky, etc. Experimen-
tal results demonstrate that the proposed method signifi-
cantly improves image matching accuracy over state-of-the
art image-feature-based methods. Moreover, the proposed
approach is scalable and is expected to generalize to previ-
ously unseen locations, based on experimental results.

Acknowledgments: This work was partially supported
by Volkswagen Group of America.
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