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Abstract

The need for quantification of cell growth patterns in a multilayer, multi-cellular tissue necessitates the development of a 3D
reconstruction technique that can estimate 3D shapes and sizes of individual cells from Confocal Microscopy (CLSM) image
slices. However, the current methods of 3D reconstruction using CLSM imaging require large number of image slices per
cell. But, in case of Live Cell Imaging of an actively developing tissue, large depth resolution is not feasible in order to avoid
damage to cells from prolonged exposure to laser radiation. In the present work, we have proposed an anisotropic Voronoi
tessellation based 3D reconstruction framework for a tightly packed multilayer tissue with extreme z-sparsity (2–4 slices/cell)
and wide range of cell shapes and sizes. The proposed method, named as the ‘Adaptive Quadratic Voronoi Tessellation’
(AQVT), is capable of handling both the sparsity problem and the non-uniformity in cell shapes by estimating the
tessellation parameters for each cell from the sparse data-points on its boundaries. We have tested the proposed 3D
reconstruction method on time-lapse CLSM image stacks of the Arabidopsis Shoot Apical Meristem (SAM) and have shown
that the AQVT based reconstruction method can correctly estimate the 3D shapes of a large number of SAM cells.
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Introduction

The causal relationship between cell growth patterns and gene

expression dynamics has been a major topic of interest in

developmental biology. However, most of the studies in this

domain have attempted to describe the interrelation between the

gene regulatory network and cell growth and deformation

qualitatively. A proper quantitative analysis of the cell growth

patterns in both the plant and the animal tissues has remained

mostly elusive so far. Information such as rates and patterns of cell

expansion play a critical role in explaining cell growth and

deformation dynamics and thereby can be extremely useful in

understanding morphogenesis. The need for quantifying these

biological parameters (such as cell volume, cell growth rate, cell

shape, mean time between cell divisions etc.) and observing their

time evolution is, therefore, of utmost importance to biologists.

For complex multi layered, multi cellular plant and animal

tissues, the most popular method to capture individual cell

structures and to estimate the aforementioned parameters for

growing cells is the Confocal Microscopy based Live Cell Imaging.

Confocal Laser Scanning Microscopy (CLSM) enables us to

visually inspect the inner parts of the multilayered tissues. Through

this technique we can image tissues as a collection of serial optical

slices (also known as the ‘Z-Stack’), which can then be used for

analysis. Live cell imaging is a class of microscopy, where the same

living cells are observed and imaged at regular time intervals over

several hours to monitor their motion or displacement and to

visualize cell growth and division dynamics.

Recently, there has been a substantial amount of work in

automated processing and analysis of cellular images – though

mostly on image segmentation and cell tracking. Methods such as

[1,2] show that individual cells can be efficiently segmented in a

multicellular field and [3,4] provide automated methods to track

individual cells in time. Estimation of cell shape and volumes as a

function of time is most fundamental to understanding of the

growth process. Due to the large quantity of data collected during

the growth of a tissue, computational methods for robust

estimation of 3D cell structures and cell volumes are absolutely

necessary in order to obtain statistically significant results of these

growth parameters.

Inspite of the extreme usefulness of CLSM based live cell

imaging for analysing such tissue structures, there are number of

technical challenges associated with this imaging technique that

makes the problem of cell shape estimation non-trivial. To keep

the cells alive and growing, we have to limit the laser radiation

exposure to the specimen, i.e. if dense samples in one time point

are collected, it is highly unlikely that we will be able to get time

lapse images as the specimen will not continue to grow in time due

to high radiation exposure. Therefore the number of slices in

which a cell is imaged is often very low (2–4 slices per cell). Again,

the fluorescent signal fades as we image the deeper layers of the

tissue, thereby bringing in the problem of very low SNR in parts of
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the confocal image stack. Please note that in some cases, a two-

photon excitation microscopy or light sheet microscopy can be

better choices for live-cell imaging for more efficient light detection

and less photo-bleaching effect. But, a large number of data sets

exist that are imaged using CLSM or exhibit the characteristic of

our data and our method can be useful in analyzing them. We

have found that two photon excitation is toxic to SAM cells than

the single photon CLSM and since the SAM is surrounded by

several developing flower buds, the side ward excitation may not

be possible. Also, by designing an image-analysis method that is

capable of handling the worse quality data, we can ensure that

same or better accuracy can be achieved on a data-set having

superior image quality and resolution. Thus, from an image

analysis perspective, we are looking at a very challenging problem

where we want to obtain a 3D surface reconstruction of arbitrary

cell shapes from a set of very sparsely sampled data points in

presence of unavoidable imaging noise. Also, the reconstruction

pipeline must be fully automated. In most cases, manual analysis

(which has been the trend) is usually extremely tedious and, often,

only provides qualitative trends in the data rather than precise

quantitative models.

In this study, we have looked at the problem of 3D

reconstruction of a tightly packed multi-layer tissue from its Z-

sparse confocal image slices. As a special example, in this paper we

have proposed a novel, fully automated cell resolution 3D

reconstruction framework for Shoot Apical Meristem (SAM) of

Arabidopsis Thaliana. SAM, also referred to as the stem cell niche,

is a very important part of a plant body plan because it supplies

cells for all the above ground plant parts such as leaves, branches

and stem. A typical Arabidopsis SAM is a densely packed multi

layered cell cluster consisting of about five hundred cells where the

cell layers are clonally distinct from one another. The tight

tessellation of cells in SAM enabled us to estimate the 3D structure

of individual cells using the slice information of the cell as well as

that of its nearest neighbors. The 3D estimation is based on prior

geometrical tessellation models, the parameters for which are

estimated from the sparse image data to hand and then this model

is used to partition the 3D SAM structure into individual cellular

regions.

Being motivated by the methods in [5,6], we first assume a

‘Voronoi’ tessellation model based on Euclidean distance metric to

segment/reconstruct the 3D cell shapes. Through the results

obtained on 3D sparse confocal stacks of SAM images we show

that this model yields a good approximation of cell shapes where

the shapes and sizes of the cells are uniform along all three axes of

the cells and the major axes of growth of the neighbouring cells are

isotropic. But, in practice, this is not always the case and the cells

can have very anisotropic shape and growth, even in a close

neighborhood. In such cases, the Voronoi tessellation using the

Euclidean distance fails to generate accurate enough cell walls.

We, therefore, propose an anisotropic Voronoi Tessellation

defined on a quadratic distance metric to capture the growth

anisotropy of individual cells along all of their axes. We show that

the parameters of this metric can be estimated from the sparse set

of confocal image slices of the individual cells and the tessellation

based on this metric can provide very accurate 3D cell shapes as

quadratic surfaces even in the case of non-uniform cell shapes,

sizes or growth along different cell axes. The tessellation, named as

the ‘Adaptive Quadratic Voronoi Tessellation’ (AQVT) and the

3D reconstruction technique based on it, presented in this paper,

provide accurate enough 3D reconstructed cell shapes and sizes in

the SAM as validated through the experiments in Section 5.3. We

also show that the proposed anisotropic Voronoi tessellation

(AQVT) can also be applied on tissues, where the cell shapes in the

tissue follow a standard Euclidean distance based Voronoi

tessellation.

While this method is motivated by our previous work in [7],

there are fundamental differences in both theory and implemen-

tation between [7] and the present work based on AQVT. The

main differences are as follows. 1. The AQVT poses and solves the

problem of 3D segmentation/reconstruction in the standard

framework of geometric tessellation, which is very intuitive for

such type of problems and has solid theoretical basis in the

literature. 2. The method described in [7] is an iterative method

that can have long runtime depending on desired level of accuracy

and chosen parameters (e.g. step-size in the deformation stage).

AQVT based reconstruction method described in this paper is a

single-step process and hence has lesser execution time in

comparison to [7]. 3. While there are a number of user defined

parameters and thresholds required for the method in [7], AQVT

does not require any user input other than the sparsely sampled

segmented cell slices for reconstruction, thereby making the

Figure 1. Shoot Apical Meristem (SAM): A multilayer cell cluster. (A) SAM located at the top of the shoot of Arabidopsis, (B) A detailed surface
view showing different regions of SAM, (C1–C3) Three consecutive slices of SAM, each 1:5mm apart, obtained through CLSM technique, (D) A cross
sectional side view of SAM, which clearly shows the multiple layers (L1, L2, L3) of tightly packed stem cells and their shapes, (E1–E3) The visible cell
walls of individual cells in 3 sparsely sampled consecutive slices of the SAM obtained from the 3D CLSM live imaging dataset.
doi:10.1371/journal.pone.0067202.g001

Cell Resolution 3D Reconstruction from CLSM Images
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present method less ambiguous and easy to use. It can be shown

that under a very specific criterion, [7] can generate similar results

as the proposed method, which is discussed in detail in Section

4.2.3.

Problem Formulation

2.1 Goal
The objective of the present work is to obtain a fully automated

cell-resolution 3D reconstruction/segmentation of a tightly packed

anisotropically growing tissue from initial 2D segmentations and

slice to slice correspondences of its sparsely Z-sampled confocal

image slices.

2.2 Research Challenges and Contributions
There are several methods of shape and size estimations for

individual cells such as impedance method [8] and light

microscopy methods [9]. Methods such as [10] are used to study

changes in cell sizes in cell monolayers. In live plant tissues, a

number of work focussed on the surface reconstruction [11,12].

But we are looking at a much more challenging problem where the

subject of study is a dense cluster of cells. Plant meristem is one

example of such cell clusters where hundreds of small cells are

densely packed into a multilayer structure (Figure 1). In such cases,

now-a-days, the most popular practice is to use Confocal Laser

Scanning Microscopy (CLSM) to image cell or nucleus slices at a

very high spatial resolution and then reconstruct the 3D volume of

the cells from those serial optical slices which has been shown to be

reasonably accurate [13–15].

However, performance of the current imaging based 3D

reconstruction techniques depends heavily on the availability of

a large number of very thin optical slices of a cell and the

performance rapidly deteriorates in the cases where the number of

cell slices becomes limited. This problem is very common

Figure 2. A schematic of Voronoi Tessellation and Estimated SAM cell centroids as Voronoi sites. (A) A Voronoi diagram based on the
Euclidean distance metric for twenty one sites in 2D. The figures also show that the Voronoi edges are perpendicular to the line joining any two
neighbouring sites. AB, CD, EF are three of the Voronoi edges and they are the perpendicular bisectors of X1X2, X3X4, X5X6 respectively. (B)
Centroids are estimated for around two hundred cells in a SAM tissue, which are also the sites of Euclidean distance based Voronoi tessellation.
doi:10.1371/journal.pone.0067202.g002

Figure 3. Generation of the dense point cloud from within the reconstructed SAM surface. (A) The SAM contours extracted from the
confocal image stack using Level-Set segmentation, (B) The SAM surface is reconstructed using linear interpolation on a local neighbourhood of
points on the SAM contours, (C) A very dense point cloud is extracted from within the reconstructed SAM surface which is clustered using the
proposed reconstruction technique into individual cells.
doi:10.1371/journal.pone.0067202.g003

Cell Resolution 3D Reconstruction from CLSM Images
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especially in CLSM based live cell imaging when the time gap

between successive observations is small. In order to keep the cells

alive and growing for a longer period of time and obtain frequent

observations, a cell cannot be imaged in more than 2–4 slices, i.e.,

high depth-resolution and time-resolution cannot be achieved

simultaneously.

A very recent method [14] accurately reconstructs the Shoot

Apical Meristem of Arabidopsis. This method uses a dataset

containing fine slice images acquired from 3 different angles, each

at a Z-resolution of 1 mm. They have reported 24 hours as the time

resolution in imaging. But, for analyzing the growth dynamics of

cell clusters where the time gap between successive cell divisions is

in the range of 30 to 36 hours, we need a much higher time

resolution in imaging in order to capture the exact growth

dynamics. To obtain longer cell lineages at high time resolution we

may have to sacrifice the spatial or depth resolution and hence the

number of image slices in which a cell is present can be really

small. With such a limited amount of image data, the existing 3-D

reconstruction/segmentation techniques cannot yield a good

estimate of cell shape. In the present work we have addressed

this problem of reconstructing plant cells in a tissue when the

number of image slices per cell is very limited.

There is a basic difference between the segmentation problem at

hand and a classical 3D segmentation scheme. A classical method

solves the segmentation problem using the pixel intensities and

cannot work when no intensity information is provided for a

majority of 3D pixels in the image. In such situations, the most

intuitive way to perform the segmentation is to first segment

sections in the image with known intensity information using a

classical segmentation scheme, and then to extrapolate between

these sparse segments using a known geometric model or a

function which could be generic or data-specific. In this work, we

have shown that a quadratic Voronoi tessellation is a very accurate

choice for such a geometric model for segmenting a tissue with

anisotropically growing tightly packed cells starting with a sparse

set of 2D Watershed segmented slices per cell.

The Shoot Apical Meristem is a multilayer, multicellular

structure where the cells are tightly packed together with hardly

any void in between. Motivated by this physical structure of SAM,

we propose our novel cell resolution 3D reconstruction in a

geometric tessellation framework. A tessellation is a partition of a

space into closed geometric regions with no overlap or gap among

these regions. In case of the SAM tissue, each cell is represented by

such a closed region and any point in the 3D SAM structure must

be the part of one and only one cell. In fact, there are some recent

works in the literature as [5] which predicted that the 3D

structures of Arabidopsis SAM cells could be represented by

convex polyhedrons forming a 3D ‘Voronoi’ tessellation pattern.

A Voronoi tessellation is one of the simplest form of partitioning

of the metric space, where the boundaries between two adjacent

partitions are equidistant from a point inside each of these regions,

also known as the ‘sites’. In [5,6], these sites are the approximate

locations of the center of the cell nuclei about which the tissue is

tessellated into individual cells. However, this work used a dataset

where both the plasma membrane as well as the nucleus of each

cell is marked with fluorescent protein, whereas, in our case, only

the plasma membrane is visible under the confocal microscope.

In this work, we present and evaluate a fully automated cell

resolution 3D reconstruction framework for reconstructing the

Arabidopsis SAM where the number of confocal image slices per

cell is very limited. The framework comprises of different modules

such as cell segmentation, spatial cell tracking, SAM surface

reconstruction and finally a 3D tessellation module. We evaluate

the Euclidean distance based Voronoi tessellation model on our

dataset and then from its limitation, we continue to propose a

quadratic distance based anisotropic Voronoi tessellation, where

the distance metric for each cell is estimated from the segmented

and tracked sparse data-points for the cell. This method is

applicable to the densely packed multi-cellular tissues and can be

used to reconstruct tissues without voids between cells with

sufficiently high accuracy. Note that, for the proposed 3D

reconstruction module, we start with a handful of data-points on

each segmented cell which are pre-clustered through the cell

tracking method (i.e. an incomplete segmentation of the 3D)

whereas, the final output of our algorithm is a complete tessellation

of the entire 3D structure of the SAM, where each cell is

represented by a very dense point cloud. These point clouds for

individual cells can be visualized by 3D convex polyhedrons that

approximate the shape of the cells.

2.3 Organization
The rest of the paper is organized as follows. Sections 3.1 and

3.2 describe the overview of our approach and challenges

associated with various steps in it. The mathematical and

algorithmic details of the proposed reconstruction method are

provided in Sections 4.1 and 4.2. Finally, we present the

experimental results and validation of our approach followed by

a concluding discussion.

Figure 4. Ellipsoidal representation of the AQVT parameters estimated from the sparse data-points. (A) The Minimum Volume
Enclosing Ellipsoids representing the (c,S) parameter pairs for individual cells are shown in different colors. (B) The same representation viewed from
top.
doi:10.1371/journal.pone.0067202.g004

Cell Resolution 3D Reconstruction from CLSM Images
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Overview of the Proposed Method

To properly understand the research challenges and our

contributions, we first explain the data (Section 3.1). We also

briefly describe the necessary preprocessing stages such as cell

segmentation and cell tracking that generate the final data

structure as an input to the 3D reconstruction pipeline.

3.1 Imaging Setup and Preprocessing
The SAM of Arabidopsis Thaliana consists of approximately 500

cells and they are organized into multiple cell layers that are

clonally distinct from one another. By changing the depth of the

focal plane, CLSM can provide in-focus images from various

depths of the specimen. To make the cells visible under laser,

fluorescent dyes are used. The set of images, thus obtained at each

time point, constitute a 3-D stack, also known as the ‘Z-stack’.

Each Z-stack is imaged at a certain time interval (e.g. 3 hours

between successive observations) and it is comprised of a series of

optical cross sections of SAMs that are separated by approx.

1.5 mm (Figure 1). A standard shoot apical meristematic cell has a

diameter of about 5 – 6 mm and hence in most cases, a single cell is

not visible in more than 3–4 slices when the tissue is sparsely

imaged at 1.5 mm to avoid photodynamic damage to the cells. To

account for any minor shift in the alignment of the images in the 3-

D stack, each stack is registered by a method of maximization of

mutual information [16].

As we are interested in computing volume of every cell in the

SAM cell cluster, we need to segment out all the cells in each slice.

Figure 5. Sample segmentation and spatio-temporal tracking result. (A) Raw confocal image slice, (B) Watershed segmented cell edges from
the same image in A, (C) Individual cell slices are tracked in z to find correspondence between slices belonging to the same cells. The cells are color
coded in the image to show the correspondences. The cells can also be tracked in time (which is shown using the same color code) that can be useful
while reconstructing the same cells in consecutive time points to observe the growth of those cells.
doi:10.1371/journal.pone.0067202.g005

Cell Resolution 3D Reconstruction from CLSM Images
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We can employ various segmentation algorithms like Watershed

[17], Level-Set segmentation [1] etc. which have their own

advantages and disadvantages. Although the method we propose

here is independent of the segmentation strategy we choose to

employ, we have preferred Watershed [18] over level-set

segmentation as it produces more accurate and realistic cell

boundaries for our SAM confocal data. Please note that, the

contribution of our method lies in the post segmentation and

tracking stage though a better segmented data is guaranteed to

improve the performance of both the tracking and 3D recon-

struction methods.

In order to find a cell’s correspondence across multiple slices in

both the spatial and temporal direction, we have used our local-

graph matching based robust cell tracking algorithm [4,19]. This

algorithm starts by finding out a seed cell pair between two SAM

slice images using ‘local graph matching’ and progressively moves

outward from the seed-pair to obtain correspondences between

neighboring cells until all the cells are tracked. This method is

Figure 6. Visualization of the AQVT based 3D reconstruction of SAM cell cluster. (A) Visualization of the 3D reconstructed structure of a
cluster of around 220 closely packed cells using convex polyhedron approximations of the densely clustered data-points for each cell, as obtained
from the proposed 3D reconstruction scheme, (B) A subset of cells from the same tissue.
doi:10.1371/journal.pone.0067202.g006

Figure 7. Reconstruction of a cluster of cells using Euclidean distance based Voronoi tessellation and the proposed AQVT for
comparison of the 3D reconstruction accuracy. (A) Segmented and tracked cell slices for a cluster of fifty two cells from the L1 and L2 layers of
SAM. A dense confocal image stack is subsampled at a z-resolution of 1.35 mm to mimic the ‘z-sparsity’ observed in a typical Live-Imaging scenario.
The slices belonging to the same cell are marked with the same number to show the tracking results. (B) 3D reconstructed structure for a subset of
these cells when reconstructed using the Euclidean distance based Voronoi Tessellation. (C) The AQVT based reconstruction result for the same cell
cluster.
doi:10.1371/journal.pone.0067202.g007

Cell Resolution 3D Reconstruction from CLSM Images
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robust because it fuses tracking results over the entire 4-D image

stack and thereby minimizes the chances of losing a cell in any of

the slices caused by poor segmentation of noisy data. Another

advantage comes from the batch processing capability of this

method which enables us to reconstruct a large number of SAM

cells at a time.

3.2 Proposed 3D Reconstruction – Overview
Once the sparse image slices are segmented and tracked to

generate the initial clustering of individual cell slices, the objective

is to obtain full 3D reconstructions of these cells. As explained

above, for live imaging with frequent observations in time, the

number of slices in which a particular cell can be present is very

small (e.g. 2–4 slices/cell). Unfortunately, the existing 3-D

reconstruction methods are not capable of handling such sparsity

in data. Motivated by the physical structures of the cells, we handle

this issue by assuming a prior geometrical 3D tessellation model

for the tissue, the parameters of which is estimated to fit the given

sparse set of segmented cross sectional images.

In [5,6], the authors have used a standard Voronoi tessellation

technique to estimate the cell boundaries from the known

information of the nucleus location for individual cells. Motivated

by their work, we first show how a Voronoi tessellation can be

fitted to our CLSM dataset which only have the partial cell wall

information (Section 4.1.1, Section 4.1.2). Unlike the dataset used

in [5,6], we do not have the cell nuclei marked in our dataset. The

standard affine Voronoi tessellation is not always accurate enough

to reconstruct the cells in SAM as different cells in the tissue can

have very diverse sizes as well as the neighbouring cells might not

have isotropic growth directions. This motivates us to propose an

anisotropic Voronoi tessellation model (Section 4.2) for the tissue,

which is also a generalization of the standard Affine Voronoi

tessellation. We show how to estimate the parameters (Sec-

tion 4.2.1) of an anisotropic or quadratic distance function for

individual cells from the sparse data-points on the boundaries of

these cells. The proposed quadratic Voronoi tessellation approach,

termed as the ‘Adaptive Quadratic Voronoi Tessellation’ (AQVT)

is then used to cluster a dense point cloud obtained from within

the estimated 3D surface of the SAM and thereby, to generate the

final 3D shapes of each individual cell (Section 4.2.2).

Detailed Methods: The 3D Reconstruction
Framework

4.1 Voronoi Tessellation Based 3D Reconstruction
4.1.1 A Brief Overview of Voronoi Tessellation and Its

Properties. ‘Voronoi Diagram’ is a geometric minimization

diagram that splits its embedding space into different non-

overlapping regions. Each of these regions is characterized by a

generating point or an object also known as the ‘site’. All other

points in each of these regions are closer to the site in its region

than to any other site in the entire embedding space. The closeness

of the points to the sites is computed using a distance metric.

There can be different types of sites ranging from a point, a line to

any complex geometric shape. Depending on the type of sites, the

distance metric or the embedding space, several different

variations of the Voronoi diagram can be defined. Detailed

discussions on many of such variants can be found in [20–22].

Based on the characteristic of site and distance function, the

locus of the points equidistant from two neighboring sites (also

termed as the ‘bisectors’ or ‘edges’) can be hyperplanes or higher

order hypersurfaces. We call the Voronoi diagrams with hyper-

Figure 8. Comparison of the 3D reconstruction accuracy for the proposed AQVT based reconstruction against Euclidean distance
based Voronoi tessellation. (A) The cells shown in Figure 7(A) are reconstructed using the Euclidean distance based Voronoi tessellation and the
computationally re-sliced cells are compared against the ground truth. (B) The same cells are reconstructed using the adaptive quadratic distance
based Voronoi tessellation and then computationally re-sliced along various depths in z at which we also have the ground truth (in terms of the 2D
segmentation results of the cell slices), but were not used in generating the reconstruction results. The computationally obtained cell slices are shown
in different colors for different cells and they are superimposed by the ground truth segmentation results. (C) The error in reconstruction (similar to
the reprojection error) is computed as the Modified Hausdorff Distance (MHD) between the computationally generated cell slices and the
segmentation results on the ground truth images of the same cells. The MHD, computed for each of the 52 cells at different depths in the Z-stack are
plotted for both the methods to compare the methods against each other. It can be clearly observed from the plots that the reconstruction error is
much larger for the Euclidean distance based Voronoi tessellation (VT) than for AQVT, especially at the terminal (3rd ,4thand 6th) slices, between
consecutive layers of cells.
doi:10.1371/journal.pone.0067202.g008

Cell Resolution 3D Reconstruction from CLSM Images
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plane bisectors as the ‘Affine Voronoi’ diagrams. The most

common example of such an affine diagram is the Voronoi

diagram of points based on the Euclidean distance metric.

Let there be n point sites in a space Rd , and the set of all sites S
be fs1, s2, � � � sng. The Voronoi regions associated with these sites

are represented as V (s1), V (s2), � � � V (sn) where,

V (si) ~
\

sj[S,j=i

H(si, sj) ð1Þ

where H(si, sj) is the half-plane defined by,

H(si, sj) ~ x[Rd D d(x,si) v d(x,sj)
� �

ð2Þ

The distance d(x,si) for a standard Voronoi diagram is the

Euclidean distance defined by

d(x,si) ~ Ex { siE2

Again, the set of all points on the bisector between two Voronoi

regions V (si) and V(sj) is given by,

B(si, sj) ~ x[Rd D Ex{siE2~Ex{sjE2

� �
ð3Þ

Some of the properties of the Euclidean distance based Voronoi

diagram with point sites are as follows:

(1) The line joining any two Voronoi sites si and sj is always

perpendicular to the Voronoi bisector/edge B(si, sj),

(2) The perpendicular distances from si and sj to B(si, sj) are

equal to one another,

(3) Any point x[V (si) would satisfy

Ex{siE2 ƒ Ex{sjE2, Vj[f1,2, � � � ng

and

(4) The Voronoi regions, thus produced, are convex polyhedrons

and can be expressed as intersection of a finite number of

open or closed half spaces.

In Figure 2(A), we have shown some of the properties for a 2D

Voronoi tessellation with twenty one sites (X1, X2, X3 etc.). It can

be observed that each of these Voronoi regions is a convex

polygon.

4.1.2 Voronoi Sites Estimation From Sparse Data. After

segmentation and tracking, we are given a sparse set of 3D data-

points that lie on the boundary between the neighbouring cells.

Our objective is to fit a Voronoi tessellation to these data-points to

obtain complete structures of individual cells, represented as

Voronoi polyhedrons in 3D. Therefore, ideally the sparse data-

points should lie on the bisectors between the neighbouring

Voronoi regions. Given a very sparse set of data-points on the

bisectors as in the case of ‘Live cell imaging’, the only way to

reconstruct the Voronoi diagram is to first estimate the approx-

imate locations of Voronoi sites, from which the Voronoi edges/

bisectors can then be computed.

Given a set of generating sites, the construction of the Voronoi

diagram can be done through several methods, the most popular

of which being Fortune’s ‘sweep line’ algorithm. The inverse

problem, i.e. to obtain the locations of the sites given the Voronoi

bisector, is, however, less studied in the literature. In [23], Evans

et al. proposed a linear least-square technique to estimate the

Voronoi sites by fitting a Voronoi diagram over a given tessellation

pattern. Again, in [24], a number of algorithms have been

proposed to obtain the Voronoi sites given the vertices of the

Voronoi polygons. But neither of these methods is applicable to

the sparse data that we have. These methods require the

knowledge of the complete structures of the Voronoi polyhedrons,

which is precisely the output that we are after. In fact, because of

the extreme sparsity in our dataset, it is rather impossible to obtain

unique estimates of the Voronoi sites for individual 3D cells.

Figure 9. Errors in AQVT estimated cell volumes from their respective ground truth volumes at various levels of sparsity. A cluster of
cells from a 3D confocal image stack with z resolution of 0.225 mm is resampled to generate stacks of 5 different levels of sparsity. Each of these
resampled stacks is 3D reconstructed using the proposed AQVT and volumes of each of the cells in the cluster are computed. The means and
standard deviations of absolute errors in volumes (expressed as a ratio to the ground truth volumes) of all the cells for each sparser stacks are plotted.
The average error slowly increases with increased sparsity but is less than 5.3% with a standard deviation of 4% even at 1.35 mm/slice (i.e. 3 slices/cell
on an average).
doi:10.1371/journal.pone.0067202.g009
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In this situation, the knowledge about the physical structure of

the SAM stem cells help us in obtaining approximate locations of

the Voronoi sites, where each cell is represented as a Voronoi

region. In [6], the authors observed that the SAM cells can be

represented as Voronoi regions where the sites are located at the

approximate centers of the cell nuclei. This observation, along

with the fact that the nucleus, located in the central region of the

cell, contributes to the majority of the size of a SAM cell motivates

us to devise a simple strategy to estimate the approximate site

locations, even when the nuclei are not imaged in the confocal

image stack.

Given that the sparse set of points on the segmented and tracked

slices of a cell c are P(c)
sparse (the 3D data-point set

f(x(c)
sparse, y(c)

sparse, z(c)
sparse)g), the approximate centroid location of

the cell would be ŝsc ~ ½�xx(c)
sparse, �yy(c)

sparse, �zz(c)
sparse�, where the elements

are the arithmetic means of fx(c)
sparseg, fy(c)

sparseg and fz(c)
sparseg

respectively. Thus, ŝsc is also the estimated approximate location of

the site corresponding to the Voronoi region representing the cell

c. The centroids for approximately 200 cells from a SAM tissue is

shown in Figure 2(B).

Now, the next step would be to generate a dense point cloud

sampled from within the SAM structure and to cluster this dense

set of 3D data-points into different Voronoi regions (representing

individual cells) based on the estimated locations of the sites

ŝsc, c~1,2, � � �C.

4.1.3 Generation of Dense Point Cloud To Be Partitioned

Into Cells: Global Shape of SAM. At this stage, we estimate

the 3D structure of the SAM by fitting a smooth surface to its

segmented contours. The surface fitting is done in two steps. In

step one, the SAM boundary in every image slice is extracted using

the ‘Level Set’ method (Figure 3(A)). A level set is a collection of

points over which a function takes on a constant value. We

initialize a level set at the boundary of the image slice for each

SAM cross section, which behaves like an active contour and

Figure 10. Validation of AQVT on 2D root apex longitudinal cross section data. (A) Ground truth segmentation of a sample cross sectional
slice of root apical meristem tissue (the source images for this tissue can be found in [29]). (B) The zoomed in tissue after segmentation (B-top) and
sparser point clouds per cell (in the x-z plane) after resampling the tissue at various z-resolutions (zoomed in for clarity). (C) The cells (color-coded) are
reconstructed using the proposed AQVT with the resampled point clouds as shown in B to present the change in reconstruction quality with
increased sparsity in the sampled point clouds for both the larger and elongated cells towards the outer and upper part and the smaller cells towards
the lower central part of the tissue. (D) Quantitative measure of reconstruction errors: the difference between actual and reconstructed cell shapes
are computed using modified Hausdorff distance (MHD) and the histograms of MHDs for all the cells at every level of sparsity is plotted.
doi:10.1371/journal.pone.0067202.g010
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gradually shrinks towards the boundary of the SAM. Let the set of

points on the segmented SAM contours be PSAM

(fxSAM ,ySAM ,zSAMg).
In the second step, we fit a surface on the segmented points

PSAM . Assuming that the surface can be represented in the form

z~f x,yð Þ (where the function f is unknown), our objective is to

predict z at every point (x,y) on a densely sampled rectangular

grid of points bounded by xSAM
min ,ySAM

min ,xSAM
max ,ySAM

max

� �
. As the

segmented set of data points are extremely sparse, this prediction is

done using a linear interpolation on a local set of points on the grid

around the point x,yð Þ. As the value (z) for the point (x,y) is

approximated by a linear combination of the values at a few

neighboring points on the grid, the interpolation problem can be

posed as a linear least-square estimation problem. We also impose

a smoothness constraint in this estimation by forcing the first

partial derivatives of the surface evaluated at neighboring points to

be as close as possible. A MATLAB visualization [25] of the

surface is shown in Figure 3(B).

Once the SAM surface (SSAM ) is constructed, we uniformly

sample a dense set of 3D points (Pdense, a visualization can be

found in Figure 3(C)) such that every point in Pdense must lie inside

SSAM . Thus, Pdense~fx1,x2, � � � xNg and the required output

from the proposed algorithm is a clustering of these dense data

points into C cells/clusters such that

Pdense~fP̂P(1)
dense,P̂P

(2)
dense, � � � P̂P(C)

denseg starting from the sparse set of

segmented and tracked points Psparse~fP(1)
sparse,P(2)

sparse, � � �P(C)
sparseg

obtained from the confocal slice images of individual cells.

4.1.4 Segmentation of The Dense Point Cloud Into

Voronoi Cells. In this step, we partition the dense point cloud

Pdense, obtained in the last step, into C clusters based on the site

locations ŜS ~ fŝscg, c~1,2, � � �C, estimated in Section 4.1.2.

The cth cell can be represented as a collection of dense data-

points belonging to the cth Voronoi region as

P̂P
(c)
dense ~ x[Pdense D Ex{ŝscE2 ƒ Ex{ŝskE2 Vk[f1,2, � � �Cgf g ð4Þ

Once the dense point cloud belonging to each Voronoi region is

obtained, we can construct convex polyhedrons with each of these

dense point clusters (P̂P
(1)
dense, � � � P̂P(C)

dense) to obtain the cell resolution

3D reconstruction of SAM.

4.2 An Adaptive Quadratic Voronoi Tessellation (AQVT)
For Non-uniform Cell Sizes And Cell Growth Anisotropy

In a tissue like SAM, cells do not grow uniformly along all three

axes (X ,Y ,Z). In fact, most of the cells show a specific direction of

growth. Again, neighboring cells in SAM, especially in the central

region (CZ), are not likely to grow along the same direction. Thus,

even if a tessellation is initially an affine Voronoi diagram, it is not

likely to remain so after a few stages of growth. Such cases of non-

uniform cell sizes and anisotropic growth can be captured in a

more generalized non-affine Voronoi tessellation called the

‘Anisotropic Voronoi Diagrams’. In the most general form of

such diagram for point sites, the distance metric has a quadratic

form with an additive weight [22].

Following similar notations used in previous sections, for a set of

anisotropic sites S ~ fs1, s2, � � � sng in Rd , the anisotropic

Voronoi region for a site si is given by,

VA(si) ~ x[Rd D dA(x,si) ƒ dA(x,sj) Vj[f1,2, � � � ng
� �

ð5Þ

where

dA(x,si) ~ (x{si)
TSi(x{si) { vi ð6Þ

Si is a d x d positive definite symmetric matrix associated with the

site si and vi[R. Thus each of the anisotropic Voronoi regions is

parameterized by the triplet (si, Si, vi). Further assuming

vi ~ vj Vi,j[f1,2, � � � ng, the distance function becomes

dQ(x,si) ~ (x{si)
TSi(x{si) ð7Þ

As the bisectors of such a Voronoi diagram are quadratic

hypersurfaces, these diagrams are called ‘Quadratic Voronoi

Diagrams’, wherein every Voronoi cell i is parameterized by

(si, Si) pairs.

VQ(si) ~ x[Rd D dQ(x,si) ƒ dQ(x,sj) Vj[f1,2, � � � ng
� �

ð8Þ

From Equation(7), it can be observed that Si is essentially a

weighting factor that non-uniformly weights distances in every

Voronoi regions along every dimension. When all the Voronoi

regions are equally and uniformly weighted along every axis,

Si ~ Idxd Vi~1,2, � � � n and the resulting diagram for point sites

becomes an Euclidean distance based Voronoi diagram.

4.2.1 Estimating The Distance Metric From Sparse Data:

Minimum Volume Enclosing Ellipsoid. Now, the problem at

hand is to estimate the parameter pair for each cell/quadratic

Voronoi regions from the sparse data-points, as obtained from the

segmented and tracked slices, that belongs to the boundary of each

cell. Given the extreme sparsity of the data, there is no available

method that would provide Sis for each region. We, in this work,

propose an alternative way of estimating (si, Si) pairs directly from

the sparse data-points.

An ellipsoidal surface in 3D is given by the locus of the point x
that satisfies

(x{xc)T M(x{xc) ~ 1 ð9Þ

where xc is the center of the ellipsoid and M is a positive definite

symmetric matrix. For any point x inside the ellipsoid,

(x{xc)T M(x{xc) v 1 and for every x outside it,

(x{xc)T M(x{xc) w 1.

Now, (x{xc)T M(x{xc) is, in fact, the Mahalanobis distance

of the point x from the center xc of the ellipsoid. Therefore, if a

point y is equidistant for the centers of two ellipsoids (xc1
,M1) and

(xc2
,M2) in the Mahalanobis sense, then,

(y{xc1
)T M1(y{xc1

) ~ (y{xc2
)T M2(y{xc2

) ð10Þ

Now, Equation (10) gives the locus of the points y, which is

exactly the same as that of the points on the bisector two

neighbouring quadratic Voronoi regions parameterized by

(xc1
,M1) and (xc2

,M2). We already have a set of points

(Psparse)which are sparsely but uniformly z-sampled from the

boundaries between neighbouring cells. The tracking algorithm

provides us with the exact cell pairs on which every point from this

set belongs to. Therefore we can approximately estimate the

distance parameters associated with every quadratic Voronoi

region individually by fitting an ellipsoid to the sparse data-points
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belonging to the boundaries of that region. In this paper, we

choose fit Minimum Volume Enclosing Ellipsoids (MVEE) to each

of fP(1)
sparse,P(2)

sparse, � � �P(C)
sparseg for C cells individually and obtain

approximate estimates of f(s1,S1),(s2,S2), � � � (sC ,SC)g. The

estimation strategy is described later in this Section and the

details of the same can be found in Section 3 of File S1.

As we are estimating the parameters of quadratic distance

metric associated with every individual Voronoi cell separately and

then using the distance metrics, thus obtained, to tessellate a dense

point cloud, we choose to call the resulting Voronoi tessellation as

the ‘Adaptive Quadratic Voronoi Tessellation’ (AQVT).

After registration, segmentation and identification of a cell in

multiple slices in the 3-D stack, we can obtain (x,y,z) co-ordinates

of the set of points on the perimeter of the segmented cell slices.

Let this set of points on the cth cell be P(c)
sparse~fp1,p2, � � � pkg[R3.

We have to estimate the minimum volume ellipsoid which encloses

all these k points in R3 and we denote that with E. An ellipsoid in

its center form is represented by

E(s,S)~fp[R3 D (p{s)TS(p{s)ƒ1g ð11Þ

where s[R3 is the center of the ellipsoid E and S[R3|3. Since all

the points in P(c)
sparse must reside inside E, we have

(pi{s)TS(pi{s)ƒ1 for i ~ 1,2, � � � k ð12Þ

and the volume of this ellipsoid is

Vol(E) ~
4

3
pfdet(S)g{

1
2 ð13Þ

Therefore, the problem of finding the Minimum Volume

Enclosing Ellipsoid (MVEE) for the set of points P(c)
sparse can be

posed as

min
S,s

{ log det(S)

s:t: (pi{s)TS(pi{s)ƒ1 for i ~ 1,2, � � � k

S]0 ð14Þ

To efficiently solve Problem (14) we convert the primal problem

into its dual problem since the dual is easier to solve. A detailed

analysis on the problem formulation and its solution can be found

in [26,27]. Solving this problem individually for each sparse point

set P(1)
sparse,P(2)

sparse, � � �P(C)
sparse, the parameters of the quadratic

distance metrics are estimated as f(̂ss1,ŜS1),(̂ss2,ŜS2), � � � (̂ssC ,ŜSC)g.
To visually represent these parameters, we have constructed the

ellipsoids with each of these parameter pairs and color coded them

to represent individual cells in a SAM tissue (Figure 4).

4.2.2 3D Tessellation Based on The Estimated

Parameters of AQVT: The Final Cell Shapes. As soon as

the parameters of the quadratic distance metrics are estimated

from the previous step, the dense point cloud Pdense obtained in

Section 4.1.3 can be partitioned into different Voronoi regions

based on Equation (8), i.e. the dense point cloud belonging to cell c

is given as

P̂P
(c)
dense ~ x[Pdense j (x{ŝsc)T ŜSc(x{ŝsc)ƒ(x{ŝsj)

T ŜSj(x{ŝsj)
�

Vj[f1,2, � � �Cgg
ð15Þ

For visualization purpose of the cell resolution 3D reconstruc-

tion results, we fit convex polyhedrons to P̂P
(1)
dense,P̂P

(2)
dense, � � � P̂P(C)

dense to

represent each cell.

4.2.3 Relation Between The AQVT and Deformed

Trucncated Ellipsoid Based Tessellation [7]. In a recent

work [7], we have shown that the 3D shapes of individual cells in a

tightly packed multi-layer tissue can be approximated by deformed

truncated ellipsoidal models. In that work, first, the enclosing

ellipsoids (MVEE) are fitted to the sparse data-points for each cell,

which are then recursively deformed until a certain stopping

criterion (see [7]) is satisfied and finally truncated along the

overlapping surfaces of those 3D deformed ellipsoids to obtain the

final 3D cell shapes.

Following the same notations used before, the estimated

enclosing ellipsoids for the sparse point sets P(1)
sparse,

P(2)
sparse, � � �P(C)

sparse are given by f(̂ss1,ŜS1),(̂ss2,ŜS2), � � � (̂ssC ,ŜSC)g. We

observed through our experiments that the best 3D reconstruction

results are achieved when the estimated ellipsoids are deformed

along their axes and the deformation along each axes at each

iteration step is proportional to the current length of the axes. Let

the factor by which each axis is deformed be f and let there be h
iterations before the algorithm in [7] converges.

As we can express S as VDV{1 through Eigenvalue

decomposition (see [7]) and the deformed S after h iterations of

deformation can be written as

Sdef ~ V 1=fð Þ2h
DV{1

the points on the reconstructed cell boundary between the cells i
and j, after h steps of iteration would be given by,

x[Pdensej(x{ŝsi)
T V̂Vi 1=fð Þ2h

D̂DiV̂V
{1
i (x{ŝsi)~

n

(x{ŝsj)
T V̂Vj 1=fð Þ2h

D̂DjV̂V
{1
j (x{ŝsj) Vi,j[f1,2, � � �Cg

o ð16Þ

where V̂ViD̂DiV̂V
{1
i ~ ŜSi

As f is a scalar, the Expression (16) can be rewritten as,

x[Pdense j (x{ŝsi)
T ŜSi(x{ŝsi) ~ (x{ŝsj)

T ŜSj(x{ŝsj)
�

Vi,j[f1,2, � � �Cg g
ð17Þ

Equation (17) is exactly same as the set of the boundary points

between Voronoi regions i and j for a Adaptive Quadratic

Voronoi Tessellation. Thus, under the deformation condition

described above, the method proposed in [7] and AQVT produce

the same tessellation result. But, the major advantage of using

AQVT over [7] is that, AQVT yields the 3D reconstruction result

in a single step, whereas, the deformed truncated ellipsoidal model

described in [7] is an iterative process. The number of iterations

can be very large depending on the choice of the stopping criterion

or the step-size in the deformation stage and hence [7] is, in

general, a much slower algorithm. Apart from that, the 3D

reconstruction results can vary widely depending on the chosen
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step-size for deformation in [7] and thus the quality of the

reconstruction result is often unpredictable. We have experimen-

tally observed that in [7] the least error in reconstruction is

achieved when the deformation step sizes for each cell in the tissue

are equal or very close to one another. This condition, as shown

above, gives us the distance metric of AQVT. Therefore, AQVT

provides a unique solution to the 3D reconstruction and is, in most

cases, guaranteed to yield better or the same reconstruction result

when compared to that in [7] at a significantly less execution time.

It can also be noted that the proposed AQVT does not require any

user chosen threshold or parameter to be input into reconstruction

framework, making the method less ambiguous and more user

friendly than [7].

Results and Discussion

5.1 Pre-processing Results
We have tested the proposed 3D Reconstruction framework on

a cluster of around two hundred and twenty cells spanning L1 and

L2 layers of an Arabidopsis Shoot Apical Meristem. The details of

the generation of raw image data using CLSM technique are

described in Section 3.1. We used a modified Watershed

segmentation [18] to segment individual cell slices and a sample

Watershed segmented image slice is shown in Figure 5(B) (the raw

image slice is shown in Figure 5(A)). In the next step, we have

clustered the slices belonging to each cell using the local graph-

matching based cell tracking method described in [4]. An example

of the tracking result is shown in Figure 5(C), where the same cells

are marked with the same color in three successive slices, in both

the spatial and temporal direction. Once the sparse cell slices are

clustered together, the sparse set of data points on each cell are

extracted and used to estimate the approximate location of the

sites for Euclidean distance based Voronoi tessellation or in case of

the proposed AQVT based method, the site and weight

parameters for the quadratic distance metric for each cell.

5.2 3D Reconstruction Results
Figure 6(A) shows a cell resolution reconstruction of the cell

cluster in SAM using AQVT. Note that for 3D visualization

purpose of the 3D structure only, we have represented each cell as

a convex polyhedron fitted to the dense point cloud clustered to

the cells, as obtained from our 3D reconstruction/3D segmenta-

tion scheme. For better understanding of the 3D structures of

individual cells, we have shown the reconstructed shapes of a

smaller cluster of cells in Figure 6(B).

5.3 Validation of The Proposed Method
5.3.1 Validation on 3D SAM Data. There is hardly any

biological experiment which can directly validate the estimated

growth statistics for individual cells in a sparsely sampled multi

layered cluster. In fact, the absence of a method to estimate growth

statistics directly using non-computational methods in a live-

imaging developmental biology framework is the motivation for

the proposed work and we needed to design a method for

computationally validating our 3D reconstruction technique.

Once the 3D reconstruction is achieved, we can computationally

re-slice the reconstructed shape along any arbitrary viewing plane

by simply collecting the subset of reconstructed 3D point cloud

that lies on the plane.

To show the validation of our proposed method, we have

chosen a single time point dataset that is relatively densely sampled

along Z (0.225 mm between successive slices). Then, we resampled

this dense stack at a resolution of 1.35 mm to generate a sparser

subset of slices that mimic the sparsity generally encountered in a

live-imaging scenario. The sparsely sampled slices for a cluster of

cells spanning two layers (L1 and L2) in the SAM are shown in

Figure 7. The aforementioned tracking method [4] is used to

obtain correspondences between slices of the same cells. Different

slices of the same cells imaged at different depths in Z are shown

using the same number in Figure 7(A). Next, we reconstructed the

cell cluster first by the standard Voronoi tessellation using the

Euclidean distance metric and then using our proposed method

(AQVT) with a quadratic distance metric adapted for each of these

cells. The reconstruction results for a subset of the cells for each of

these methods are shown in Figures 7(B) and 7(C) respectively for a

direct comparison. It can be observed that not only our proposed

method very accurately reconstructed the cell shapes but also it has

captured the multi-layer architecture of these SAM cells more

closely in comparison to its Voronoi counterpart with the

Euclidean distance metric.

To better investigate the accuracy of the reconstruction and to

show the clear advantage of using the proposed method of

reconstruction quantitatively, we measure distances between the

2D cross sections of the 3D reconstruction results for each cell to

the Watershed segmented cell boundaries. By choosing the

reslicing plane as z~1:125,2:475,3:825mm (different slices than

those used for reconstruction) from top of the stack for the L1 layer

cells and z~5:175,6:525,7:875mm for the L2 layer cells, we can

computationally regenerate the cell walls for these imaging planes

along Z. The shapes of cells in the reconstructed slices can be

compared against their counterparts in the 2D segmented images

and the distance between the shapes would represent the

reconstruction error. There are several different distance metrics

that can be used to compute the dissimilarity between two shapes

such as the Procrustes distance, Hausdorff distance etc., each one

having its own advantages. We have chosen to use the Modified

Hausdorff Distance (MHD), one of the more popular distance

measures in the Hausdorff distance family, to evaluate our

reconstruction method. The advantages of MHD over other

distance measures for object shape matching is described in details

in [28]. It can be noted that the error, thus computed, is analogous

to the reprojection error that is widely used in the 3D

reconstruction community to quantify the accuracy of reconstruc-

tion.

In Figure 8(A), we have shown the computationally resliced cell

slices (color coded to represent the same cells at multiple slices) at

various depths for Euclidean distance based Voronoi tessellation

and Figure 8(B) shows the 2D cross sections for the same cells as

obtained by reslicing the 3D cell shapes in the proposed AQVT

based reconstruction method. For both the image sets, the

computationally obtained cross sections of each cell are superim-

posed by the Watershed segmentation results for the same cell

slices (the ground truth). The MHD between the original and

computationally generated cell slices are computed and for each of

the cells in 6 different slices, this error is shown in Figure 8(C).

It can be observed that each of the graphs in Figure 8(C)

comprises of the reconstruction errors for individual cell slices for

both the methods of the reconstruction. For the slices closer to the

center of the cells, both the methods show similar and acceptably

small reprojection error. However, in case of the terminal slices for

each cell along Z, the proposed adaptive quadratic distance based

reconstruction method shows a far better reconstruction accuracy

(as evident in the 1st,3rd ,4th,6th graphs in Figure 8(C)). This

improvement of result is more prominent for cells that have non-

uniform shapes and growth such as elongation along any one of

the axis. We further validate this observation by performing a

similar experiment on a cluster of cells of various sizes and

dimensions in a sample root meristem longitudinal cross sectional
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slice image. This experiment and the results are elaborated in the

next subsection.

We have also evaluated the accuracy of our method by studying

how much do the estimated volumes of the cells differ from ground

truth for various levels of sparsity in the z-sampling. For the dense

data described before (0.225 mm between slices along z), we first

estimate the ground truth cell volumes of a cluster of cells by

counting the total number of superpixels per cell and multiplying

that with the superpixel size (0.260.260.225 mm3). Then, we

gradually resample the dense stack at 5 successive z resolutions

(viz. 0.45, 0.675, 0.9, 1.125, 1.35 mm) and for each of these

resampled stacks, we reconstruct the same cells using the proposed

AQVT and estimate the cell volumes. It can be noted that with

each of these respective resampling, the resultant 3D stack

becomes more and more sparse. For example, at 0.45 mm z

resolution of sampling, the average number of slices per cell is 7 or

8, whereas, for 1.35 mm, the same cells are captured in an average

of 3 slices. The errors in estimation of individual cell volumes at

various sparsity levels are shown in Figure 9. We have plotted the

means and standard deviations of the absolute errors expressed as

a ratio to the ground truth cell volumes. It can be observed that at

the densest resampling (0.45 mm), the average estimation error is

as low as 3% with a standard deviation of 1.3%. The estimation

error slowly increases with increased sparsity in the stack and at a

sparsity of about 3 slices/cell, the average estimation error is 5.3%,

with standard deviation of around 4%. We have repeated the same

experiment for Voronoi tessellation with Euclidean distance metric

and the average error is much higher at around 30% (see

Figure S1).

5.3.2 Validation On 2D Root Meristem Data. For further

evaluating the performance of the proposed AQVT on tightly

packed cells of heterogeneous sizes and shapes, we perform similar

experiments on a 2D image of root meristem longitudinal cross

section with 226 cells. The ground truth segmentation of the tissue

is shown in Figure 10(A), the raw images for which can be seen in

Figure 5 of [29]. From Figure 10(A), it can be seen that a large

number of cells in the tissue slice (shown as x-z plane in

Figure 10(B)) is more elongated along the longitudinal direction

(shown as z-axis in Figure 10(B)), whereas the other cells have

similar x and z diameters. Again, the cells towards the the

periphery are much larger than the cells in the lower central

region of the tissue. To mimic the scenario of sparse sampling

along one dimension, we artificially sample the segmented cells

along z (longitudinal) axis (see Figure 10(B)) to generate point

clouds for each cell at various sparsity

(Dz~dz=9,dz=6,dz=4 and dz=3, where dz is the average cell

diameter along z axis). We assume sparse clustering of sampled

points per cell (analogous to spatial tracking in 3D) is given to us as

the contribution of the present work is dense reconstruction of cells

from sparse point clouds, which lies in the post segmentation and

tracking stage of the reconstruction pipeline. For each of the

resampled point clouds, we use AQVT (in R2) to reconstruct the

cells (Figure 10(C)). We compute modified Hausdorff distances

from every reconstructed cell shape to the ground truth

segmentation for quantitative evaluation of the reconstruction

accuracy (Figure 10(D)). We can observe that the mean error in

the reconstructed cell shapes is less than 6% of average cell

longitudinal diameter and the maximum reconstruction error for

most of the cells in the tissue is less that 10% for all sparsities upto

Dz~dz=3 (average 3 slices or lines/cell).

Conclusion and Future Work

In this paper, we have presented a method of reconstructing

densely packed cluster of cells using a very sparsely z-sampled

confocal live imaging dataset. We have provided a mathematically

rigorous framework built on top of basic geometric tessellation

concepts. We have first shown how the cell shapes can be

approximated by the Voronoi tessellation based on Euclidean

distance measure. Then, we proposed a quadratic distance metric

based Voronoi tessellation framework to capture the asymmetry of

the cell sizes and growth along their different axes. We described

how the proposed tessellation can take care of the asymmetry by

providing weights on the distance metric along each axis for each

cell and how these weights as well as the location of the sites can be

approximately estimated from the sparse image data for individual

cells by fitting enclosing ellipsoids to the segmented sparse image

slices. We have validated our method by showing that the

reconstruction error (both in reconstructed cell shapes and

estimated cell volumes) for the cells is sufficiently low and have

provided a direct comparison of the reconstruction error for the

proposed method against the popular Euclidean distance based

Voronoi tessellation approach. As an application of the proposed

method, we have shown some preliminary results on the

estimation of growth curves for a few SAM cells in Figure S2.

Future work on this would include the integration of this 3D

reconstruction method with the spatio-temporal cell tracking

method to form a complete 4D image analysis pipeline. This

pipeline could be used to generate various cell division and cell

growth statistics in a fully automated, high-throughput manner.

The statistics collected from such a pipeline could be extremely

useful in building a dynamical model to quantitatively analyse the

spatio-temporal correlation in cell division and cell growth in a

complex multi-layered tissue.

Supporting Information

Figure S1 Errors in estimated cell volumes using
Euclidean distance based Voronoi tessellation from
their respective ground truth volumes at various levels
of sparsity. A cluster of cells from a 3D confocal image stack

with z resolution of 0.225 mm is resampled to generate stacks of 5

different levels of sparsity. Each of these resampled stacks is 3D

reconstructed using the Euclidean distance based VT and volumes

of each of the cells in the cluster is computed. The means and

standard deviations of absolute errors in volumes (expressed as a

ratio to the ground truth volumes) of all the cells for each sparser

stacks are plotted. The average error is more or less similar at all

sparsity levels and the average error is around 30% with a large

standard deviation of more than 25%).

(TIFF)

Figure S2 Cell Growth Curves. Growth curves for five

sample cells after the removal of occasional outliers.

(TIFF)

File S1 Supporting Information Text File. Contains an

analysis of cell volume estimation errors in Euclidean distance

based Voronoi tessellation, sample results on cell growth statistics

and a detailed solution strategy for the estimation of MVEE

parameters.

(PDF)

File S2 Codes and Demo. Contains a MATLAB implemen-

tation of AQVT as well as a working demo of the codes on a

sample 3D confocal stack of Arabidopsis SAM.

(ZIP)
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