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Abstract—Existing data association techniques mostly focus on matching pairs of data-point sets and then repeating this
process along space-time to achieve long term correspondences. However, in many problems such as person re-identification,
a set of data-points may be observed at multiple spatio-temporal locations and/or by multiple agents in a network and simply
combining the local pairwise association results between sets of data-points often leads to inconsistencies over the global
space-time horizons. In this paper, we propose a novel Network Consistent Data Association (NCDA) framework formulated as
an optimization problem that not only maintains consistency in association results across the network, but also improves the
pairwise data association accuracies. The proposed NCDA can be solved as a binary integer program leading to a globally
optimal solution and is capable of handling the challenging data-association scenario where the number of data-points varies
across different sets of instances in the network. We also present an online implementation of NCDA method that can dynamically
associate new observations to already observed data-points in an iterative fashion, while maintaining network consistency. We
have tested both the batch and the online NCDA in two application areas - person re-identification and spatio-temporal cell
tracking and observed consistent and highly accurate data association results in all the cases.
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1 INTRODUCTION

IN many computer vision problems such as tracking,
re-identification etc., associating detected targets

across space and/or time is of utmost importance.
Most data association approaches try to find corre-
spondences between pairs of instances of a set of
datapoints and repeat this process along space/time
to obtain long term correspondences. However, this
local approach for finding correspondences may lead
to inconsistencies over the global space-time hori-
zons. The goal of this paper is to show how globally
consistent correspondence results can be obtained by
enforcing suitable network-level constraints over the
entire set of observation data points.

The notion of Network Consistency is applicable to
a wide class of data association problems, especially
where the set of all observations can be partitioned
into multiple non-overlapping subsets such that no
two observations from within the same subset may
be associated with one another. The target of such a
problem is to estimate pairwise associations between
observations belonging to different subsets, over all
possible pairs of such subsets. The probable links
associating pairs of observations form a network of
associated observations and thus, the study of analyz-
ing the feasibility of pairwise associations in context
to the overall network can be termed as Network
Consistent Data Association. The class of data associ-
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ation problems where such consistency is of utmost
importance includes person re-identification, feature
matching across multiple sensors (such as multi-robot
localization, mapping, exploration etc.) and/or across
multiple time points (tracking), feature matching in
high dimensional biological datasets (such as 3D+t
cell tracking) and many more. We explain the problem
more precisely through two of such examples below.

Consider the well studied person re-identification
problem where the objective is to associate targets
across cameras with non overlapping field-of-views
(FoVs). Most widely used approaches focus on pair-
wise re-identification, i.e., association between two
camera FoVs. Even if the re-identification accuracy for
each camera pair is high, it might contain many global
association inconsistencies over the entire network
if three or more cameras are considered. Matches
between targets given independently by every pair
of cameras might not conform to one another and,
in turn, may lead to inconsistent mappings. Thus,
in person re-identification across a camera network,
multiple paths of correspondences may exist between
targets from any two cameras, but ultimately all these
paths must point to the same correspondence maps
for each target in each camera. An example scenario
is shown in Fig. 1(a). Even though camera pairs 1-
2 and 2-3 have correct re-identification of the target,
the false match between the targets in camera pair 1-
3 makes the overall re-identification across the triplet
inconsistent. It can be noted that the error in re-
identification manifests itself through inconsistency
across the network, and hence by enforcing consis-
tency the pairwise accuracies can be improved as well.

Multi-view feature tracking is another application
area where consistent data association is important.
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Fig. 1. Example of network inconsistency in data associa-
tion. (a) Person re-identification: Among the 3 possible re-
identification results, 2 are correct. Match of the target from
camera 1 to camera 3 can be found in 2 ways. The first one is
the direct pairwise re-identification result between cameras 1
and 3 (shown as ‘Path 1’), and the second one is the indirect
re-identification result in camera 3 given via the matched
person in camera 2 (shown as ‘Path 2’). The two outcomes
do not match and thus the overall associations of the target
across 3 cameras is not consistent. (b) Network incon-
sistency in spatio-temporal cell tracking: In this schematic,
association results between 2D projections of the same 3D
cell on four spatio-temporal image planes are analyzed.
The pairwise associations need to be consistent across the
loop over the four image slices. This consistency can be
used to obtain correspondences when there are no direct
pairwise matches or to correct wrong ones. For example, the
correspondence between the same cell in image slice 1 and
slice 3 (broken arrow) is established via an indirect path (solid
arrows) through slices 2 and 4.

One such feature tracking problem is the spatio-
temporal cell tracking. Using confocal microscopes,
multicellular biological tissues are often imaged at
multiple time points to observe the growth of hun-
dreds of individual cells in the tissue. At each time
point, cells within the tissue are imaged at various
confocal planes, thus resulting in a (3D+t) stack of
images. Each cell, therefore, may have projections on
different spatio-temporal planes. A cell tracker aims
to find correspondences between cell image slices
along both ‘z’ (depth of the tissue) and time and
hence the problem is same as any multi-view feature
tracking problem. Because of the multi-dimensional
nature of this tracking problem, spatial and tempo-
ral correspondences obtained by choosing the most
similar candidate for each cell independently do not
guarantee consistent results. Note that, as in the case
of re-identification, a 2D cell segment in any spatio-
temporal image slice must not have more than one
match in any other spatio-temporal image and if at
least one spatio-temporal path exists in the network
that associates two cell slices, they must be projections
of the same cell onto two image planes. Example of
network-level association inconsistencies in the (3D+t)
cell tracking problem is shown in Fig. 1(b).

The examples above represent the class of relevant
data association problems where network consistency
has to be enforced and where all the data points are
available before the associations between them are
estimated. Besides these, for many other dynamic data
association problems where more observations become

available with time, the consistency needs to be ap-
plied in an online fashion. Dynamic feature tracking
(across space and time), tracklet association, online
spatio-temporal cell tracking etc. are some of such
problems and the proposed data association method
has to be equipped with both online and offline mode
of operations.

Contribution of the Present Work: We propose a
novel consistent data association scheme over a net-
work with individual observations as nodes. We pose
the problem as an optimization problem that mini-
mizes the global cost for associating pairs of targets
on the entire network constrained by a set of consis-
tency criteria and dub this as Network Consistent Data
Association (NCDA).

The inputs to NCDA are pairwise similarity scores
between targets. Unlike assigning a match for which
the similarity score is maximum, our formulation
picks the assignments for which the total similarity of
all matches is the maximum, under the constraint that
there is no inconsistency in the assignment among any
two sets of targets given the assignments between all
other sets of targets across the network. The problem
is translated into a binary integer program that can
be solved using standard methods [1].

The proposed NCDA method is further generalized
to a more challenging scenario in data association
where the number of targets may vary across different
sets of instances in the network. For example, in
person re-identification problems all persons may not
appear in all the cameras or in case of cell tracking, 2D
projections of new cells appear deeper into a tissue.
The objective function and the constraints are mod-
ified to incorporate probable one-to-none mappings
without jeopardizing the network consistency.

For dynamic data association problems, we propose
an online version of the generalized NCDA method.
We show that the online NCDA uses the same core
ideas as the batch version, but the size of the optimiza-
tion problem solved at each time point is substantially
smaller than that of the batch version - in terms of
both the number of variables optimized and the num-
ber of constraints. The online NCDA method is able
to associate newer observations available over time
with those from the past while strictly maintaining
the network consistency.

We show the general applicability of the proposed
method by testing it in two previously mentioned
computer vision application domains, viz., person re-
identification and spatio-temporal cell tracking. We
describe how each of these challenges can be mapped
to the exact same NCDA problem, which can then be
solved to generate unambiguous and more accurate
data-association results.

2 RELATED WORK
After discussing about the related work in each of the
application areas, we shall highlight the differences
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between the current submission with our earlier paper
[2] that introduced network consistency in person re-
identification.

Person Re-identification: The existing person re-
identification approaches are camera pairwise and
they can be roughly divided into 3 categories - (i) dis-
criminative signature based methods [3], [4], [5], [6],
(ii) metric learning based methods [7], [8], [9], and (iii)
transformation learning based methods [10], [11]. Per-
son specific discriminative signatures are computed
using multiple local features (color, shape and tex-
ture) [4], [5], [6], [12], [13]. Metric learning based meth-
ods try to improve the re-identification performance
by learning optimal non-Euclidean metric defined on
pairs of true and wrong matches [14], [15], [16]. Works
exploring transformation of features between cameras
learn a brightness transfer function (BTF) between
appearance features [11], a subspace of the computed
BTFs [10], linear color variations model [17], or a
Cumulative BTF [18] between cameras. As the above
methods do not take consistency into account, apply-
ing them to a camera network does not give consistent
re-identification. Since the proposed method is built
upon the pairwise similarity scores, any of the above
methods can be the building block to generate the
camera pairwise similarity between the targets.

Spatio-temporal Cell Tracking: There has been
some work on automated tracking and segmenta-
tion of cells in time-lapse images, for both plants
and animals. Some of the well-known approaches
for segmenting and tracking cells are active contours
based methods [19], [20], [21], [22], [23], Softassign
method [24], [25], tracking based on association be-
tween detections[26], [27], [28], multiple hypotheses
based tracking[29], joint detection and tracking[30],
[31]. In [32], [33], a spatio-temporal tracking algorithm
for Arabidopsis SAM was proposed, where relative
positional information of neighboring cells were used
to generate unique features for each cell. In [34],
the spatio-temporal cell tracking problem is posed as
an inference problem on a conditional random field.
However, most of these methods have focused on slice
to slice/pairwise cell tracking. The method in [32] uti-
lizes indirect paths between any two slices to improve
the pairwise tracking accuracy. However, this method
does not ensure spatio-temporally consistent associa-
tion results. The proposed NCDA method yields glob-
ally optimal and consistent correspondences between
2D cell slices when built on any method that can
generate similarity scores between cells, such as [34].

Other Relevant Work: Some recent work aims to
find point correspondences in monocular image se-
quences [35] or links detections in a tracking scenario
by solving a constrained flow optimization [36] or
using sparse appearance preserving tracklets [37].
Another flow based method for multi target track-
ing was presented in [38], which allows for one-
to-many/many-to-one matchings and therefore can

keep track of targets even when they merge into
groups. With known flow direction, a flow formula-
tion of a data-association problem will yield consis-
tent results. But in data-association problems with no
temporal or spatial layout information (e.g., person
re-identification), the flow directions are not natural
and thus the performance may widely vary with
different choices of temporal or spatial flow. Using
the transitivity of correspondence, point correspon-
dence problem was addressed in a distributed as well
as computationally efficient manner [39]. However,
‘Consistency’ and ‘transitivity’ being complementary
to each other, less computation comes at the cost of
local conflicts and mismatch cycles in absence of any
consistency constraints, requiring a heuristics based
approach to correct the conflicts subsequently. The
proposed NCDA approach, on the other hand, uses
maximal information by enforcing consistency and
produces a globally optimal solution without needing
to correct the correspondences at later stages.

In a very recent paper [2], we have introduced
the network consistency in solving the person re-
identification problem. In [2], the method and the
constraints used in the integer program are specific
to that particular problem (re-identification). How-
ever, in this paper, we provide a generalized prob-
lem formulation for solving any network level data
association problem first, and describe the way the
generalized constraints can be simplified further for
problems in specific application areas. Moreover, in
this paper we introduce a novel online implementa-
tion of the NCDA for solving dynamic/online data
association problems. We show how the design of the
optimization problem can reduce the size of the prob-
lem per iteration than that of the batch generalized
NCDA method. Besides the re-identification problem,
we also show applications of this data association
method in the (3D+t) cell tracking problem and how
the generalized constraints can be translated into their
problem specific forms.

3 THE NETWORK CONSISTENT DATA AS-
SOCIATION PROBLEM
3.1 Notations and Terminologies
1. Node: A node is a datapoint/target that needs to
be associated with other datapoints via NCDA. For
person re-identification problems, a node represents a
target in the FoV of a camera, whereas, in cell tracking
problem a node is a 2D segmented cell (at any given
spatio-temporal location).

2. Group: A ‘group’ is a collection of nodes. A node
can never be associated with any other node from the
same group it belongs to. For example, in a typical
person re-identification problem, the set of all targets
appearing in the FoV of the same camera is a group
and for spatio-temporal tracking, the collection of 2D
cell segmentations in one image slice can be assumed
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a group. Thus, a node is a member of a group. Let
the i

th node in the group g be denoted as Pg

i

.
3. Similarity Score Matrix: This is a matrix data

structure containing feature similarity scores between
nodes belonging to two different groups. Therefore,
for each pair of groups in a network there is one
such matrix. Let C(p,q) denote the similarity matrix
between groups p and q. Then (i, j)

th element in C(p,q)

is the similarity score between the nodes Pp

i

and Pq

j

.
4. Assignment Matrix: We need to know whether

the nodes Pp

i

and Pq

j

are associated or not, 8i, j =

{1, · · ·n} and 8p, q = {1, · · ·m}. The associations be-
tween targets across groups can be represented using
‘Assignment matrices’, one for each pair of groups.
Each element x

p,q

i,j

of the assignment matrix X(p,q)

between the group pair (p, q) is defined as follows,

x

p,q

i,j

=

(
1 if Pp

i

and Pq

j

are the same targets
0 otherwise

(1)

If the same set of targets is observed in each group,
then X(p,q) is a permutation matrix, i.e., only one
element per row and per column is 1, all the others
are 0. Mathematically, 8xp,q

i,j

2 {0, 1}
nX

j=1

x

p,q

i,j

= 1 8i = 1 to n,

nX

i=1

x

p,q

i,j

= 1 8j = 1 to n (2)

5. Edge: An ‘edge’ between two nodes Pp

i

, and Pq

j

from two different groups of nodes is constructed
between the i

th node in group p and the j

th node
in group q. It should be noted that there will be no
edge between the nodes of the same group. There are
two attributes connected to each edge. They are the
similarity score c

p,q

i,j

and the association value x

p,q

i,j

.
6. Path: A ‘path’ between two nodes (Pp

i

,Pq

j

) is a
set of edges that connect the nodes Pp

i

and Pq

j

without
traveling through a node twice. Moreover, each node
on a path belongs to a different group. A path between
Pp

i

and Pq

j

can be represented as the set of edges
e(Pp

i

,Pq

j

) = {(Pp

i

,Pr

a

), (Pr

a

,Ps

b

), · · · (Pt

c

,Pq

j

)}, where
{Pr

a

,Ps

b

, · · · Pt

c

} are the set of intermediate nodes on
the path between Pp

i

and Pq

j

. The set of association
values on all the edges between the nodes is denoted
as L, i.e., xp,q

i,j

2 L, 8i, j = [1, · · · , n], 8p, q = [1, · · · ,m]

and p < q. Finally, the set of all paths between any
two nodes Pp

i

and Pq

j

is represented as E(Pp

i

,Pq

j

) and
the z

th path is e

(z)
(Pp

i

,Pq

j

) 2 E(Pp

i

,Pq

j

).

3.2 NCDA Objective Function and Constraints
Let us first discuss the problem of one-to-one data
association where the number of datapoints per group
is constant and each datapoint from one group would
have exactly one match in another group. This type
of data association problem is often relevant to the
person re-identification datasets, where the same set
of persons appears across the FoVs of all the cameras.
Later, we shall present a more generalized version
of NCDA where number of datapoints belonging to
different groups may vary and therefore a datapoint
may or may not have a match in another group.

For the pair of groups (p, q), the sum of the simi-
larity scores of association is given by

P
n

i,j=1 c
p,q

i,j

x

p,q

i,j

.
Summing over all possible pairs of groups, the global
similarity score can be written as

C =

mX

p,q=1
p<q

nX

i,j=1

c

p,q

i,j

x

p,q

i,j

(3)

The set of constraints are as follows.
1. Pairwise Association Constraint: For the one-to-

one association scenario, a datapoint from the group p

can have only one match from another group q. This is
mathematically expressed by the set of equations (2).
This is true for all possible pairs of data groups and
can be expressed as,

nX

j=1

x

p,q

i,j

= 1 8i = 1 to n 8p, q = 1 to m, p < q

nX

i=1

x

p,q

i,j

= 1 8j = 1 to n 8p, q = 1 to m, p < q

(4)

2. Loop Constraint: This constraint comes from the
consistency requirement. If two nodes are indirectly
associated via nodes in other groups, then these two
nodes must also be directly associated. Therefore,
given two nodes Pp

i

and Pq

j

, it can be noted that for
consistency, a logical ‘AND’ relationship between the
association value x

p,q

i,j

and the set of association values
{xp,r

i,a

, x

r,s

a,b

, · · ·xt,q

c,j

} of any possible path between the
nodes has to be maintained. The association value
between the two nodes Pp

i

and Pq

j

has to be 1 if
the association values corresponding to all the edges
of any possible path between these two nodes are 1.
Keeping the binary nature of the association variables
and the pairwise association constraint in mind the
relationship can be compactly expressed as,

x

p,q

i,j

�

0

@
X

(Pr
k ,Ps

l )2e

(z)(Pp
i ,P

q
j )

x

r,s

k,l

1

A� |e(z)(Pp

i

,Pq

j

)|+1 (5)

8 paths e

(z)
(Pp

i

,Pq

j

) 2 E(Pp

i

,Pq

j

), where |e(z)(Pp

i

,Pq

j

)|
denotes the cardinality of the path |e(z)(Pp

i

,Pq

j

)|, i.e.,
the number of edges in the path. The relationship
holds true for all i and all j. For the case of a triplet
of cameras the constraint in Eqn. (5) simplifies to,

x

p,q

i,j

� x

p,r

i,k

+ x

r,q

k,j

� 2 + 1 = x

p,r

i,k

+ x

r,q

k,j

� 1 (6)
An example from person re-identification involving

3 cameras and 2 persons is illustrated with the help of
Fig. 2. Say, the raw similarity scores between pairs of
targets across cameras suggest associations between
(P1

1 ,P2
1 ), (P2

1 ,P3
1 ) and (P1

2 ,P3
1 ) independently. How-

ever, when these associations are combined together
over the entire network, it leads to an infeasible
scenario - P1

1 and P1
2 are the same person. This infeasi-

bility is also correctly captured through the constraint
in Eqn. (6), i.e., x1,3

1,1 = 0 but x

1,2
1,1 + x

2,3
1,1 � 1 = 1, thus

violating the loop constraint.
For a generic scenario involving a large number

of groups of nodes where similarity scores between
every pair of groups may not be available the loop
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Fig. 2. An illustrative example showing the importance of
the loop constraint in a data-association problem. It presents
a simple person re-identification scenario in a camera net-
work involving 2 persons (data points) in 3 cameras (groups).

constraint equations (i.e., Eqn. (5)) have to hold for
every possible triplet, quartet (and so on) of groups.
On the other hand, if the similarity scores between all
nodes for every possible pair of groups are available,
the loop constraints on quartets and higher order
loops are not necessary. If loop constraint is satisfied
for every triplet of groups then it automatically en-
sures consistency for every possible combination of
groups taking 3 or more of them. So, in such a case,
the loop constraint for the network can be written as,

x

p,q

i,j

� x

p,r

i,k

+ x

r,q

k,j

� 1 (7)
8 i, j, k = [1, · · ·n], 8 p, q, r = [1, · · ·m], and p < r < q

In spatio-temporal cell tracking problem, 3D struc-
tures of tightly packed multilayer tissues are imaged
at various depths and at multiple observational time
points. This yields a (3D+t) data structure of images,
each of which contains 2D spatio-temporal projections
of numerous 3D cells. More details on the structure of
the data can be found at Sec. 6.2. Now, the target is to
estimate correspondences between these 2D cellular
projections along both space and time, i.e., between
images at various depths at the same time point or at
the same depth across consecutive time points. Thus,
the entire spatio-temporal cell tracking network can
be exhaustively partitioned into quartets of cell slices.
One such quartet is shown (by arrows) in Fig. 1(b).
Unlike triplets as in person re-identification case, the
number of edges on an indirect path between any
two nodes in a quartet is 3 and hence the value of
|e(z)(Pp

i

,Pq

j

)| in Eqn. (5) is 3. The loop constraints for
the cell tracking problem can, therefore, be derived
from Eqn. (5) as

x

p,q

i,j

� x

p,r

i,k

+ x

r,s

k,l

+ x

s,q

l,j

� 3 + 1

= x

p,r

i,k

+ x

r,s

k,l

+ x

s,q

l,j

� 2

8 i, j, k, l = [1, · · ·n], 8 p, q, r, s = [1, · · ·m],

and p < r < s < q

(8)

Note that the above expressions are valid when there
are equal number of nodes (cells/persons) in all
groups and an exact one-to-one correspondence be-
tween each pair of groups is expected.

3.3 Overall Problem for One-to-one Associations
By combining the objective function in Eqn. (3) with
the constraints in Eqn. (4) and Eqn. (5), we pose the
overall optimization problem for the case of one-to-
one mapping between groups as,

argmax

x

p,q
i,j

i,j=[1,··· ,n]
p,q=[1,··· ,m]

0

B@
mX

p,q=1
p<q

nX

i,j=1

c

p,q

i,j

x

p,q

i,j

1

CA

subject to
nX

j=1

x

p,q

i,j

= 1 8i = [1, · · · , n]

8p, q = [1, · · · ,m], p < q (9)
nX

i=1

x

p,q

i,j

= 1 8j = [1, · · · , n] 8p, q = [1, · · · ,m], p < q

x

p,q

i,j

�

0

@
X

(Pr
k ,Ps

l )2e

(z)(Pp
i ,P

q
j )

x

r,s

k,l

1

A� |e(z)(Pp

i

,Pq

j

)|+ 1

8 i, j = [1, · · ·n], 8 p, q = [1, · · ·m], and p < q

8 paths e

(z)
(Pp

i

,Pq

j

) 2 E(Pp

i

,Pq

j

)

x

p,q

i,j

2 {0, 1} 8i, j = [1, · · · , n], 8p, q = [1, · · · ,m], p < q

The above optimization problem for optimal and
consistent data association is a binary integer pro-
gram. The exact and simplified form of the integer
program is discussed in the supplementary material.

4 NCDA FOR VARIABLE NUMBER OF
DATA-POINTS IN EACH GROUP
As explained in the previous sub-section, the NCDA
can be achieved by solving the binary IP formulated
in Eqn. (9). However, the assumption of one-to-one
association between targets across groups may not
be valid in many practical scenarios, especially when
there are unequal numbers of datapoints in different
groups. For re-identification in a camera network,
there may be situations when every person does
not go through the FoV of every camera. For the
spatio-temporal cell tracking problems, there could
be variable number of segmented cell slices on the
images at different spatio-temporal locations. In such
cases, a datapoint may not have association with any
datapoint from another group and hence the values of
assignment variables in every row or column of the
assignment matrix can all be 0. However, a one-to-
many association is still infeasible as before. For re-
identification, a person from any camera p can have
at most one match from another camera q. As a result,
the pairwise association constraints now change from
equalities to inequalities as follows,

nqX

j=1

x

p,q

i,j

 1 8i = [1, · · · , n
p

] 8p, q = [1, · · · ,m], p < q

npX

i=1

x

p,q

i,j

 1 8j = [1, · · · , n
q

] 8p, q = [1, · · · ,m], p < q

(10)
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where, n
p

snd n

p

are the number of nodes (datapoints)
in groups p and q respectively.

However, with this generalization, it is easy to see
that the objective function (in Eqn. (9)) is no longer
valid. Even though the provision of ‘no match’ is
now available, the optimal solution will try to get as
many associations as possible across the network. This
is due to the fact that the current objective function
assigns reward to both true positive (correctly asso-
ciating a datapoint across groups) and false positive
associations. Thus the optimal solution may contain
many false positive associations. This situation can
be avoided by incorporating a modification in the
objective function as follows,

mX

p,q=1
p<q

np,nqX

i,j=1

(c

p,q

i,j

� k)x

p,q

i,j

(11)

where k is any value in the range of the similarity
scores. This modification leverages upon the idea
that, typically, similarity scores for most of the true
positive matches in the data would be much larger
than majority of the false positive matches. In the
new cost function, instead of rewarding all positive
associations we give reward to most of the true pos-
itives, but impose penalties on the false positives. As
the rewards for all true positive (TP) matches are
discounted by the same amount k and as there is
penalty for false positive (FP) associations, the new
cost function gives us optimal results for both ‘match’
and ‘no-match’ cases. The choice of the parameter
k depends on the similarity scores generated by the
chosen method, and thus can vary from one pair-
wise similarity score generating method to another.
Ideally, the distributions of similarity scores of the
TPs and FPs are non-overlapping and k can be any
real number from the region separating these two
distributions. However, for practical scenarios where
TP and FP scores overlap, an optimal k can be learned
from training data. A simple method to choose k

could be running NCDA for different values of k over
the training data and choosing the one giving the
maximum accuracy on the cross validation data. So,
for this more generalized case, the NCDA problem
can be formulated as follows,

argmax

x

p,q
i,j

i=[1,··· ,np]
j=[1,··· ,nq ]
p,q=[1,··· ,m]

0

B@
mX

p,q=1
p<q

np,nqX

i,j=1

(c

p,q

i,j

� k)x

p,q

i,j

1

CA

subject to
nqX

j=1

x

p,q

i,j

 1 8i = [1, · · · , n
p

]

8p, q = [1, · · · ,m], p < q

npX

i=1

x

p,q

i,j

 1 8j = [1, · · · , n
q

] 8p, q = [1, · · · ,m], p < q

x

p,q

i,j

�

0

@
X

(Pr
k ,Ps

l )2e

(z)(Pp
i ,P

q
j )

x

r,s

k,l

1

A� |e(z)(Pp

i

,Pq

j

)|+ 1

8 i = [1, · · · , n
p

], j = [1, · · · , n
q

],

8 p, q = [1, · · ·m], and p < q

8 paths e

(z)
(Pp

i

,Pq

j

) 2 E(Pp

i

,Pq

j

)

x

p,q

i,j

2 {0, 1} 8i = [1, · · · , n
p

], j = [1, · · · , n
q

],

8p, q = [1, · · · ,m], p < q (12)

5 ONLINE IMPLEMENTATION OF NCDA
5.1 Motivation
The generalized NCDA implementation, as presented
in Sec. 4, is aimed at solving data association problems
where all the observations are available and the target
is to establish an optimal set of correspondences be-
tween them while maintaining network consistency. It
is implemented as a batch method and the size of the
problem increases quite dramatically with increase in
the number of observations.

For example, a typical person re-id system is de-
signed to run on datasets where all the observations
across multiple camera FoVs are given. However, in
a realistic setting, new observations are obtained with
time and the data association method must be capable
of assigning ids to observations as and when they
become available.

In this section, we present an online formulation of
the NCDA method. The online formulation is a direct
theoretical extension of the batch problem (Eqn. (12)),
as all the constraints (pairwise/loop) from the batch
NCDA are preserved. Additionally, the online imple-
mentation of NCDA is capable of handling another
very important and realistic scenario that the batch
NCDA is not designed to. In a person re-id or a multi-
view tracking problem, the same target may reappear
in the same camera FoV after passing through the
FoVs of some other camera(s) in the network. Unlike
the batch method, the online NCDA can correctly re-
id the target while maintaining global consistency.

5.2 Method
The definitions of nodes, groups, edges and paths follow
from Sec. 3.1. Let us assume that there are m groups
of observations upto time point t and the number of
unique observations in group k is n

(t)
k

, k = 1, 2, · · ·m.
Thus, until time t, the total number of unique obser-

vations is N

(t)
=

mP
1
n

(t)
k

. Let us also assume that the

N

(t) observations are already associated and the asso-
ciation is represented using a set of estimated labels
x

p,q

i,j

=

(t)
x

p,q

i,j

, 8i = [1, · · ·n(t)
p

], 8j = [1, · · ·n(t)
q

], p, q =

[1, · · ·m], p < q.
In the next time window [t, t + w], say, there are

l

(w) new observations across different groups and the
objective is to associate these new observations to the
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Fig. 3. A schematic showing time evolution of the online
NCDA implementation. (a) The green target appeared in
both group 1 (G1) and group 2 (G2) until time t and the
black target only appeared in group 3 (G3). Data association
problem is solved until time t using NCDA and the labels
are shown. (b) Two new observations (from the blue and the
green target) are observed simultaneously at time point t+1
in groups 1 and 3 respectively. The past observations are
blurred out. (c) At time t+ 2, no observation in G1 or G3, but
an observation (from the black target) is obtained in G2. All
past observations are blurred including the ones from time
t + 1. (d) NCDA is run to associate the 3 new observations
obtained in the time window [t, t + 2] to the ones obtained
until t. Two dummy groups (DG1 and DG2) are created for
the new observations - DG1 holds the observations from
the blue and the green target as they have time overlap
and DG2 holds the observation from the black target as it
has no space/time overlap with the other two and hence
can be legally associated with either of them. Nodes from
the dummy groups are connected via edges (dashed lines)
to one another and to the nodes corresponding to all past
observations. Online NCDA (as in Eqn. (18)) is run with past
associations (solid lines) as constraints and the new labels
are estimated (only label 1s are shown).

already observed targets and among each other. Now,
some of these l

(w) observations may have temporal
or spatial overlap with some other new observation
and therefore may not be associated with each other.
As example, in person re-identification/multi-camera
tracking problem, multiple observations may have
temporal overlap between them. Likewise, in spatio-
temporal cell tracking, cells in a 2D image slice have
spatio-temporal overlap and hence cannot have as-
sociations among one another. The l

(w) new observa-
tions can therefore be partitioned into s subsets where
no two observations within a subset may have come
from the same target. Thus, n

m+1+n

m+2+ · · ·n
m+s

=

l

(w), where n

p

is the number of unique observations
in the p

th subset.
Following the definitions in Sec. 3.1, each of these s

subsets can be called a virtual/dummy ‘group’. Thus in
the aforementioned time window, the data-association
problem can be solved using NCDA with a total of
N

(t)
+ l

(w) nodes (observations) and m+ s groups.
Time evolution of the online NCDA and the set

of unlabeled edges are shown in Fig. 3. Edges are
constructed between each node in a dummy group
and the nodes in the other m + s � 1 groups. Now

the target is to assign labels (0/1) on each of these
unlabeled edges maintaining optimality and network
consistency. As the data-association between all the
past observations (N (t) in m groups) is already solved,
all the labeled edges can be treated as a set of ad-
ditional constraints in NCDA. As these additional
constraints use the already assigned labels for edges
present till time t, the resulting IP only solves for the
edge labels each of which involves (at least) one node
from the new l

(w) nodes. For re-identification prob-
lems, moving new observations into dummy groups
also enables us to associate observations of the same
target re-appearing in the same camera FoV.

Objective Function: The objective function is similar
to that of generalized NCDA (Eqn. (11)), though it is
defined only on the set of unlabeled edges for the
online implementation, i.e.,

m+sX

p,q=m+1
p<q

np,nqX

i,j=1

(c

p,q

i,j

� k)x

p,q

i,j

+

m+s,mX

p=m+1,
q=1

np,nqX

i,j=1

(c

p,q

i,j

� k)x

p,q

i,j

(13)
The first part of the objective function is de-

fined over all unlabeled edges between nodes of the
dummy groups (m+1, · · ·m+s), whereas, the second
part constitutes of unlabeled edges between the nodes
in the dummy groups and the past observed nodes (in
groups 1, · · ·m). Let, the set containing all unlabeled
edges at any iteration be represented as Eu .

Pairwise Association Constraints: The set of pair-
wise association constraints between pairs of groups
of observations is defined as in Eqn. (10), except the
fact that at least one of the groups must be a dummy
group. Mathematically,

nqX

j=1

x

p,q

i,j

 1 8i = [1, · · · , n
p

], 8(p, q) 2 E(w)

npX

i=1

x

p,q

i,j

 1 8j = [1, · · · , n
q

], 8(p, q) 2 E(w)

(14)

where the pairs of groups (E(w)) are given as

E(w)
= {(p, q) : p, q 2 [1, · · ·m+ s], p < q}

\{(p, q) : p  m, q  m}
(15)

Loop Constraints: The loop constraints remain the
same as in Eqn. (5). However, we only need a much
smaller subset in the online NCDA implementation
as each of these inequality constraints must involve
at least one unlabeled edge, i.e., at least one edge
from the set {(Pp

i

,Pq

j

)[ e

(z)
(Pp

i

,Pq

j

)} must belong to
the set of unlabeled edges Eu . Thus, mathematically,
{(Pp

i

,Pq

j

) [ e

(z)
(Pp

i

,Pq

j

)} \ Eu 6= ; and, the loop
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constraints are, therefore,

x

p,q

i,j

�

0

@
X

(Pr
k ,Ps

l )2e

(z)(Pp
i ,P

q
j )

x

r,s

k,l

1

A� |e(z)(Pp

i

,Pq

j

)|+ 1

and, {(Pp

i

,Pq

j

) [ e

(z)
(Pp

i

,Pq

j

)} \ Eu 6= ;
8 i = [1, · · · , n

p

], j = [1, · · · , n
q

],

8 p, q = [1, · · ·m+ s], and p < q

8 paths e

(z)
(Pp

i

,Pq

j

) 2 E(Pp

i

,Pq

j

)

(16)
Associations Between Past Observations: All obser-

vations (N (t)) upto time t are associated with one
another and these set of already estimated labels are
imposed in the online NCDA as linear constraints, i.e.,

x

p,q

i,j

=

(t)
x

p,q

i,j

, 8i = [1, · · ·n
p

], 8j = [1, · · ·n
q

],

p, q = [1, · · ·m], p < q

(17)

So, by combining Eqns. (13),(14), (15), (16) and (17),
the online NCDA problem for the time window [t, t+

w] is given as follows.

argmax

x

p,q
i,j

i=[1,··· ,np], j=[1,··· ,nq ]

(p,q)2E(w)

0
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)} \ Eu 6= ;
8 i = [1, · · · , n

p

], j = [1, · · · , n
q
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8 p, q = [1, · · ·m+ s], and p < q
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p,q

i,j

=

(t)
x

p,q

i,j

, 8i = [1, · · ·n
p

], 8j = [1, · · ·n
q

],

p, q = [1, · · ·m], p < q, and,
x

p,q

i,j

2 {0, 1} 8i = [1, · · ·n
p

], j = [1, · · ·n
q

], (p, q) 2 E(w)

(18)
Once the association labels are obtained by solving

Eqn. (18), the dummy groups are dissolved and the
new observations, labeled according to the association
results, are put back to the original groups they
belong to. If, according to the newly estimated labels,
multiple observations come from same target, they are
clubbed together into one node using any suitable
fusion strategy. The association results are further
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(c)
Fig. 4. CMC curves for the WARD dataset. Results and
comparisons in (a), (b) and (c) are shown for the camera
pairs 1-2, 1-3, and 2-3 respectively.

used to re-estimate edge labels after this observation
re-assignment step. This set of labels, denoted as
(t+w)

x

p,q

i,j

, is used in the next iteration of the online
method once the new set of observations are avail-
able. Please note that information on timestamps of
the ‘past’ observations is not remembered once the
associations are done and is not used anywhere in the
online NCDA in the subsequent time steps. Also, as
observable from Eqn. (18), the number of unknown
labels being optimized as well as the total number
of constraints used in online NCDA at each time
window is substantially less than that in batch NCDA
based implementations, thereby reducing both the
time complexity and the memory requirements.

6 EXPERIMENTS AND RESULTS
In this section, we evaluate the NCDA method on
two different computer vision application areas, viz.,
1. person re-identification and 2. spatio-temporal cell
tracking. Analysis of the results in each application
area is provided in the respective subsections.

6.1 Person Re-identification
Datasets and Performance Measures: To validate our
approach, we performed experiments on two bench-
mark datasets - WARD [6] and RAiD [2]. Though
state-of-the-art methods for person re-identification
e.g., [40], [4], [41] evaluate their performances us-
ing other datasets too (e.g., ETHZ, CAVIAR4REID,
CUHK) these do not fit our purposes since these
are either two camera datasets or several sequences
of different two camera datasets. Results are shown
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2 3 

Fig. 5. Two examples of correction of inconsistent re-
identification from WARD dataset. The red dashed lines de-
note re-identifications performed on 3 camera pairs indepen-
dently by FT. The green solid lines show the re-identification
results on application of NCDA on FT. The NCDA algorithm
exploits the consistency requirement and makes the resultant
re-identification across 3 cameras correct.

in terms of recognition rate as Cumulative Matching
Characteristic (CMC) curves and normalized Area
Under Curve (nAUC) values (provided in the sup-
plementary), as is the common practice in the liter-
ature. The CMC curve is a plot of the recognition
percentage versus the ranking score and represents
the expectation of finding the correct match inside
top t matches. nAUC gives an overall score of how
well a re-identification method performs irrespective
of the dataset size. In the case where every person
is not present in all cameras, we show the accuracy
as total number of true positives (true matches) and
true negatives (true non matches) divided by the
total number of unique people present. All the results
used for comparison were either taken from the corre-
sponding works, by running publicly available codes,
or obtained from the authors.

Pairwise Similarity Score Generation: The camera
pairwise similarity score generation starts with ex-
tracting appearance features in the form of HSV color
histogram from the images of the targets. The low
level features are extracted as proposed in [4]. Given
the extracted features, we generate the similarity
scores by learning the way features get transformed
as proposed in [42]. To keep the procedure simple,
we used only HSV appearance features unlike [42]
where several other appearance and texture features
are studied. Due to the use of HSV features only, we
differentiate this method of similarity score generation
from [42] by calling our similarity score generation
method as Feature Transform (FT). In addition to
the feature transformation based method, similarity
scores are also generated using the publicly available
code of a recent work - ICT [3] where pairwise re-
identification was posed as a classification problem in
the feature space formed of concatenated features of
persons viewed in two different cameras. More details
about the similarity score generation is provided in
[42] and in the supplementary materials.

6.1.1 WARD Dataset
The WARD dataset [6] has 4786 images of 70 different
people acquired in a real surveillance scenario in 3
non-overlapping cameras. This dataset has a huge

illumination variation apart from resolution and pose
changes. The cameras here are denoted as camera 1, 2

and 3. Fig. 4(a), (b) and (c) compare the performance
for camera pairs 1 � 2, 1 � 3, and 2 � 3 respectively.
The 70 people in this dataset are equally divided into
training and test sets of 35 persons each. The proposed
approach is compared with the methods SDALF [4],
ICT [3] and WACN [6]. The legends ‘NCDA on FT’
and ‘NCDA on ICT’ imply that the NCDA algorithm
is applied on similarity scores generated by learning
the feature transformation and by ICT respectively.
For all 3 camera pairs the proposed method outper-
forms the rest with rank 1 recognition percentage as
high as 61.71% for the camera pair 2-3. The next
runner up is the method applying only FT which has
the recognition percentage of 50.29% for rank 1.

To show how NCDA yields consistent re-
identification where pairwise method fails, two
example cases are provided in Fig. 5. At first,
re-identification is performed on 3 camera pairs
independently on the WARD data by FT method. In
the first example, though the camera pairs 1-2 and 2-3
gave correct association (red dashed lines) for both
the targets, the incorrect associations between camera
pair 1-3 (red dashed line) make the re-identification
across the 3 cameras inconsistent. Similarly, in the
second example, incorrect associations between
targets across camera pair 1-2 make the overall
re-identification results inconsistent. However, in
both the cases, NCDA exploits the consistency
requirement and makes the resultant re-identification
across 3 cameras correct (shown using green arrows).

6.1.2 RAiD Dataset
This dataset [2] was collected using 2 indoor (camera
1 and 2) and 2 outdoor (camera 3 and 4) cameras. It
has large illumination variation that is not present in
most of the publicly available benchmark datasets. 41
subjects were asked to walk through these 4 cameras
and 6920 images of 41 persons are present in it.

The proposed approach is compared with the same
methods as for the WARD dataset. 21 persons were
used for training while the rest 20 were used in
testing. Figs. 6(a) - (f) compare the performance for
camera pairs 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4 respectively.
We see that the proposed method performs better
than all the rest for both the cases when there is
not much appearance variation (for camera pair 1-
2 where both cameras are indoor and for camera
pair 3-4 where both cameras are outdoor) and when
there is significant lighting variation (for the rest 4
camera pairs). Expectedly, for camera pairs 1-2 and
3-4 the performance of the proposed method is the
best. For the indoor camera pair 1-2 the proposed
method applied on similarity scores generated by
feature transformation (NCDA on FT) and on the sim-
ilarity scores by ICT (NCDA on ICT) achieve 86% and
89% rank 1 performance respectively. For the outdoor
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(f)
Fig. 6. CMC curves for RAiD dataset. In (a), (b), (c), (d),
(e), (f) comparisons are shown for the camera pairs 1-2
(both indoor), 1-3 (indoor-outdoor), 1-4 (indoor-outdoor), 2-3
(indoor-outdoor), 2-4 (indoor-outdoor) and 3-4 (both outdoor)
respectively.

camera pair 3-4 the same two methods achieve 79%
and 68% rank 1 performance respectively. For the rest
of the cases where there is significant illumination
variation the proposed method is superior to all.

In all the camera pairs, the top two performances
come from the NCDA method applied on two dif-
ferent camera pairwise similarity scores generating
methods. It can further be seen that for camera pairs
with large illumination variation (i.e., 1-3, 1-4, 2-3
and 2-4) the performance improvement is significantly
large. For camera pair 1-3 the rank 1 performance
shoots up to 67% and 60% on application of NCDA
algorithm to FT and ICT compared to their original
rank 1 performance of 26% and 28% respectively.
Clearly, imposing consistency improves the overall
performance with the best absolute accuracy achieved
for camera pairs consisiting of only indoor or only
outdoor cameras. On the other hand, the relative
improvement is significantly large in case of large

illumination variation between the two cameras.

6.1.3 Re-identification With Variable Number of Per-
sons
Next we evaluate the performance of the proposed
method for the generalized setting when all the peo-
ple may not be present in all cameras. For this pur-
pose, from the RAiD dataset we chose two cameras
(namely camera 3 and 4) and removed 8 (40% out of
the test set containing 20 people) randomly chosen
people keeping all the persons intact in camera 1 and
2. For this experiment the accuracy of the proposed
method is shown with similarity scores as obtained by
learning the feature transformation between the cam-
era pairs. The accuracy is calculated by taking both
true positive and true negative matches into account
and it is expressed as (# true positive+# true negative)

# of unique people in the testset .
Since the existing methods do not report re-

identification results on variable number of persons
nor is the code available which we can modify easily
to incorporate such a scenario, we can not provide a
comparison of performance here. However we show
the performance of the proposed method for different
values of k. The value of k is learnt using 2 random
partitions of the training data in the same scenario
(i.e., removing 40% of the people from camera 3 and
4). The average accuracy over these two random par-
titions for varying k for all the 6 cameras are shown
in Fig. 7(a). As shown, the accuracy remains more or
less constant till k = 0.25. After that, the accuracy for
camera pairs having the same people falls rapidly, but
for the rest of the cameras where the number of people
are variable remains significantly constant. This is due
to the fact that the reward for ‘no match’ increases
with the value of k and for camera pair 1-2 and 3-4
there is no ‘no match’ case. So, for these two camera
pairs, the optimization problem (in Eqn. (12)) reaches
the global maxima at the cost of assigning 0 label to
some of the true associations (for which the similarity
scores are on the lower side). So any value of k in
the range (0 � 0.25) will be a reasonable choice. The
accuracy of all the 6 pairs of cameras for k = 0.1 and
0.2 is shown in Fig. 7(b), where it can be seen that the
performance is significantly high and does not vary
much with different values of k.

6.1.4 Online Re-identification
In this section, we present results on application of
the online NCDA in an online person re-identification
problem. We use the RAiD dataset again for this
purpose. We randomly choose 20 subjects for training
while the remaining 21 form the test set. The results
are averaged over 5 such random partitions.

In a classical person re-identification problem setup,
all observations are assumed available at runtime and
the association problem is solved in batch. This makes
the time information for the observations redundant.
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Fig. 7. Performance of the NCDA algorithm after removing
40% of the people from both camera 3 and 4 in the RAiD
dataset. In (a) re-identification accuracy on the training data
is shown for camera pairs by varying k after removing 40% of
the training persons. (b) shows the re-identification accuracy
on the test data for the chosen values of k = 0.1 and 0.2
when 40% of the test people were not present.

However, the RAiD dataset contains timestamps as-
sociated with observations and we utilize the times-
tamps to generate the temporal data stream in the
online experimental setup. We assume that the input
to the NCDA method is a set of tracklets (a temporally
consecutive series of observations/images from the
same target obtained from within the same camera
FoV), which were made available to the NCDA at
their respective times of appearance. Moreover, as
explained in Sec. 5.2, the tracklets which are tempo-
rally overlapping (even at different camera FoVs) may
not be associated with one another. Hence, during
runtime of the online NCDA, tracklets having tem-
poral overlaps were clustered into the same dummy
group, with the pairwise similarity scores computed
as described earlier in Sec. 6.1.

In the test set, there were a total of 84 tracklets
for 21 targets. Based on time overlap, the 84 tracklets
were clustered into 35 groups on an average. These
groups of observations were time ordered and at each
iteration of the online NCDA, one such group is in-
troduced as input, Each group may contain more than
one tracklet(s). At each iteration, the new tracklets
are associated with the previously observed ones and
labeled accordingly. The association accuracy at each
iteration is estimated as (# true positive+# true negative)

# of unique people in the testset .
The variation of estimated accuracy with increasing
number of observations is plotted in Fig. 8. It can
be observed that the association accuracy is more
than 65% and remains constant on average over time.
Therefore, as new data is being observed, the data
association results do not deteriorate on account of the
larger and larger datasets - thus indicating robustness
of the proposed online NCDA method.

6.2 Spatio-temporal Cell Tracking - A Multi-View
Feature Tracking Problem
Dataset: For the experiments performed in the present
study, the 3D structure of the tissues are imaged
using single-photon confocal laser scanning micro-
scope and we have specially dealt with the ‘Shoot
Apical Meristem’ (SAM) of the plants that showcase
all the challenges associated with any spatio-temporal
cell tracking problem in a tightly packed multilayer,

Fig. 8. Application of online NCDA for the online re-id
problem. Mean association accuracies with standard devia-
tion are plotted for increasing number of observed tracklets
in the online setup. The online NCDA maintains a high
accuracy (⇠ 65%) even as the number of observed tracklets
increases.

multicellular tissue. By changing the depth of the
focal plane, CLSM can provide in-focus images from
various depths of the specimen. To make the cells
visible under laser, fluorescent dyes are used. The set
of images, thus obtained at each time point, constitute
a 3-D stack, also known as the ‘Z-stack’. Each Z-
stack is imaged at a time interval of 3 hours and it
is comprised of a series of optical cross sections of
SAMs that are separated by 1.5 µm. Thus, in this 4D
image stack, every cell can have 2D projections on
various ‘z-planes’ and the same cell can be imaged at
multiple time points. The problem of cell tracking is
to associate these spatio-temporal projections of the
individual cells in the tissue along with detection of
cell division events.

Pairwise Similarity Score Generation: Each 2D im-
age slice in the 4D confocal image stack is segmented
into individual cell slices using an adaptive Watershed
segmentation method [43] and are temporally reg-
istered using a landmark-based registration scheme
[44]. The similarity scores between 2D cell slices in
spatio-temporally neighboring images are obtained
using the method described in [34]. First, cell division
events are detected between every pair of temporally
neighboring images by utilizing the fact that com-
bined shape of children cells is typically similar to that
of the parent. Then, for every spatially/temporally
neighboring pairs of images a spatial graph is built
on one of the images, where the 2D cells are nodes
and any two neighboring cells share a link. Note
that this graph does not contain the parent/children
cells detected in the previous step. For each cell in
first image, a set of candidate cells (one probable
match in this set) is obtained from the second image.
Now, a Conditional Random Field (CRF) is defined
on this graph, and the node and edge potentials are
computed based on shape similarity between cells and
their candidates and by utilizing tight spatial topology
of the tissue respectively. A loopy belief propagation
is run on this CRF and the marginal posteriors, thus
obtained, are treated as similarity scores between the
cells and their candidates. This method is repeated
for all spatially/temporally consecutive pairs of image
slices. More details on this can be found in [34] and
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Fig. 9. Effect of NCDA towards improvement of spatio-temporal tracking results. (a) The figure shows a spatio-temporal
2X2 block of confocal images. Pairwise assignments between cells in spatial or temporal pairs of images are obtained by
performing MAP inference on graphs formed on every image slice. Infeasible 4D assignments are observed when these
pairwise associations are combined over the stack. The solid arrows represent correct associations between cells and the
broken arrows depict no association which is incorrect and cause the infeasibility. Our proposed data association approach
establishes consistency in association and corrects these errors. (b) Similar results are observed in a 2X3 confocal stack.

also in the supplementary materials.
Establishing Network Consistency: Now, the objec-

tive is to obtain consistent associations between the
2D cell slices in the entire spatio-temporal image stack
using the similarity scores generated via previous
method. Now, each 2D image slice (containing a
cluster of tightly packed cell slices) is treated as a
‘group’ and individual 2D cells on these slices are
the nodes, as before. Also, for any given image slice,
similarity scores are computed only to its immediate
spatio-temporal neighboring slices (i.e., slice above,
slice below, slice at same ‘z’ at previous time point and
the same at next time point). This architecture yields
a network of image slices (groups) that can be ex-
haustively covered using quartets of groups. Fig. 9(a)
shows one such quartet in a large network. Please
note that, unlike the person re-identification problem,
the loop constraints for the cell tracking problem
cannot be expressed as triplets, as similarity scores
are not generated between temporally neighboring
image slices that lie on different ‘z-planes’. Using
the marginal posteriors as similarity scores between
a cell slice to its spatial/temporal candidates, we run
NCDA for generating complete optimal 4D spatio-
temporal correspondences between 2D cell slices.

Analysis of Results: The effect of NCDA towards
improvement of spatio-temporal tracking results is
shown in Fig. 9. In Fig. 9(a), a sample 2X2 block
of images of Arabidopsis SAM are shown, which
contains two spatially neighboring image slices at
each of two consecutive time points of observation.
Pairs of image slices are chosen and CRFs are formed
for each of the pairs (I11 � I12, I12 � I22, I21 � I22

and I11�I21). Now, marginal posteriors are estimated
using LBP and MAP inferences are drawn to gener-

ate pairwise correspondences. When these pairwise
associations are combined together, spatio-temporally
infeasible associations are observed for a number
of cells. For example, correct associations are found
between cell 15 in I11 and cell 20 in I12, cell 20 in
I12 and cell 25 in I22, cell 25 in I22 and cell 18 in I21.
Therefore, for spatio-temporal feasibility, cell 15 in I11

and cell 18 in I21 must also be associated. However,
according to the aforementioned MAP inference, no
associations for cell cell 15 from I11 is found in I21.
Similar infeasibilities are observed for cells 3 and
44 in I11. The network consistent data association
technique, when applied on the previously computed
marginal posteriors for pairs of images, corrects these
infeasibilities and establishes the associations. Fig. 9(b)
shows similar results on a 2X3 confocal image stack,
where the false negative associations (broken arrows)
are corrected using the generalized NCDA for both
spatial/temporal tracking.

Although the number of network inconsistencies
may seem a small (3 in the 2X2 stack and 4 in 2X3
stack) percentage of the total number of cells, it is of
utmost importance that each such error is rectified.
A few inconsistencies per slice may add up to a
large number of errors in a typical confocal stack
consisting of thousands of 2D cell slices. Moreover, a
tracking error not only affects the corresponding cell
lineage, but may also affect the tracking accuracies
for a number of its neighbors in the tightly packed
multilayer tissue.
6.2.1 Online Spatio-temporal Cell Tracking
Typically in CLSM based live cell imaging, the obser-
vations are obtained every 3-6 hours. As explained in
Sec. 6.2, each of these observations is a 3D stack of
confocal images containing 2D projections of cells. In-
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Fig. 10. Application of online NCDA in Online spatio-
temporal cell tracking problem and comparison with Local
graph based cell tracker [32]. Cell tracking accuracies with
increasing amount of observations (expressed as percentage
of total number of observations) are plotted for both [32] and
the proposed online NCDA. The online NCDA outperforms
[32] and the margin increases with more observations.

stead of waiting for the entire 4D stack to be collected,
especially when it often takes 3-4 days, the online
NCDA can generate correspondence results whenever
a new 3D observation is obtained. In the cell tracking
problem, the graph is built only between tempo-
rally/spatially neighboring pairs of images. Hence,
when a new 3D stack of images is available at the
observational time point t, the online NCDA is used to
find correspondences between spatially neighboring
2D cell slices in the 3D stack at t and between these
cells and that in the stack at t�1. Note that the spatial
correspondences between cells at time t�1 are already
established in previous iteration of the online NCDA.

In a 4D confocal image stack, total of 1170 2D
unique cellular projections are observed across 4 time
points and 3 z-slices. With each time point, more cells
are observed and the cell tracking accuracies with
number of observations, as obtained by using the
online NCDA, are plotted in Fig. 10. As in the case
for re-identification, the accuracies are estimated as
a function of both true positives and true negatives.
As observed, the accuracy increases and stabilizes as
more observations become available, thereby estab-
lishing robustness of the online NCDA in case of
biological cell tracking problem, too.

To make a quantitative comparison of the proposed
NCDA over the state-of-the-art, we compared against
the local graph based cell tracking method [32] on
the same image stack. The output of this method
are association results between pairs of 2D image
slices and association accuracies are plotted in the
same figure (Fig. 10). It can be observed that NCDA
outperforms [32] substantially over time as the latter
does not enforce additional consistency constraints
over the pairwise association results.

7 CONCLUSION
When sets of data-points are observed at multiple
spatio-temporal locations, pairwise data-association
may often lead to infeasible scenarios over the global
space-time horizon. To overcome this, we have pro-
posed a generalized data-association method as a
binary integer program on a graph. This proposed

NCDA method not only maintains consistency across
the global network of data-point sets, but also im-
proves the pairwise data-association accuracy, even
when the number of data-points varies across differ-
ent sets of instances in the network. We have also
proposed a novel mathematical framework for estab-
lishing network consistency in online data association
problems. The online NCDA builds on similar ideas
used for the generalized batch method, but solves a
much smaller optimization problem at each iteration.
Two applications of the batch and online version of
proposed NCDA are shown in person re-identification
and (3D+t) cell tracking. Analysis of the results indi-
cates robustness of the method as well as significant
improvements in accuracy over the state-of-the-arts.
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