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Abstract

Linear and multi-linear models of object
shape/appearance (PCA, 3DMM, AAM/ASM, multilin-
ear tensors) have been very popular in computer vision.
In this paper, we analyze the validity of these models from
the fundamental physical laws of object motion and image
formation. We rigorously prove that the image appearance
space can be closely approximated to be locally multilinear,
with the illumination subspace being bilinearly combined
with the direct sum of the motion, deformation and texture
subspaces. This result allows us to understand theoretically
many of the successes and limitations of the linear and
multi-linear approaches existing in the computer vision
literature, and also identifies some of the conditions
under which they are valid. It provides an analytical
representation of the image space in terms of different
physical factors that affect the image formation process.
Experimental analysis of the accuracy of the theoretical
models is performed as well as tracking on real data using
the analytically derived basis functions of this space.

1. Introduction

Linear, multi-linear, and non-linear models of object
shape/appearance have been very popular in computer vi-
sion. Examples include principal components analysis
(PCA), active appearance/shape models (AAM/ASM) [9,
4], 3D morphable models (3DMM) [3], multi-linear models
(MLM) [12, 13], non-linear manifolds [7], among others.
To resolve questions about the effectiveness and accuracy of
these methods, experimental evaluations have been carried
out on larger and larger datasets. While these experiments
are a very valuable contribution, it is also important to an-
alyze the accuracy of these models from the fundamental
physical laws of object motion and image formation. Such
an analysis will allow us to understand the conditions un-
der which each of them is valid. This paper is a rigorous
theoretical study along that direction.
∗The authors were partially supported by NSF grant IIS-0712253.

1.1. Overview of the Theoretical Results
• Starting from fundamental physics-based models govern-
ing rigid object motion, deformations, the interaction of
light with the object and perspective projection, we derive a
description of the mathematical space in which an image
lies. Specifically, we prove that the image space can be
closely approximated to be locally multilinear, with the il-
lumination subspace being bilinearly combined with the di-
rect sum of the motion, deformation and texture subspaces.
• This result allows us to justify theoretically the validity of
many of the linear and multi-linear approaches existing in
the computer vision literature, while also identifying some
of the physical constraints under which they are valid. In
fact, as explained in Section 3.2, we can now understand
theoretically why some methods have worked well in some
situations, and not so well in others.
• While assuming local linearity may be intuitive, we pro-
vide, possibly for the first time an analytical description of
this image space in terms of different physical factors that
affect the image formation process.
• We show that since we can analytically express the image
space, we can estimate the motion, deformation and lighting
parameters without needing a large number of training ex-
amples to first learn the characteristics of this space and the
estimates are not a function of the learning data. This ana-
lytical expression can be used in future with learning-based
methods for more efficient image modeling.

Relation to Existing work: The theoretical analysis in this
paper builds on some recent work that have described image
appearance in terms of mathematical models derived from
fundamental physical laws. In describing the effect of light-
ing on an object, researchers have obtained descriptions of
the illumination space, e.g., illumination cone [2] and basis
illumination models [1, 10]. A more recent result showed
that rigid motion and lighting were related bilinearly [14]
in the image appearance space. In this paper, we consider a
much more general condition than any of the above - an im-
aged object undergoing a rigid motion (i.e., pose change)
while deforming and the illumination also changing ran-
domly. The theoretical derivation is based on a few weak
assumptions - a finite dimensional vector space representa-
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tion of illumination, small time interval between two image
instances, smooth 3D surface and texture of the object that
are differentiable.

2. Theoretical Derivation of the Image Appear-
ance Space

2.1. Problem formulation

Consider an object whose images are being captured by
a perspective camera. We attach the world reference frame
to the camera. Let the 3D surface of the object be described
by C(u, v) ∈ R3 in the object reference frame, where C is
parameterized using u and v. Consider two time instances
t1 and t2 = t1 + ∆t, between which the object can move
rigidly and deform (see Fig. 1).

Let the pose of the object with respect to the camera ref-
erence frame before the motion to be defined as the trans-
lation T and rotation matrix R. The rigid motion of the
object is represented as the translation ∆T = V∆t of the
centroid and the rotation ∆Ω = ω∆t about the centroid of
the object during the time interval ∆t. ∆R = eω̂∆t is the
rotation matrix due to ∆Ω, and ω̂ ∈ SO(3) is the skew-
symmetric matrix corresponding to ω ∈ R3. Deformation
is defined in the object reference frame. While the object is
deforming, its texture may also change and the illumination
may be different at t1 and t2. Our goal is to express the
image It2 mathematically as a function of motion ∆T and
∆Ω, deformation, illumination, and texture change.

We make the following assumptions, which are valid in
most situations and will discuss them later in Section 3.1.
A1) Illumination is represented by a finite dimension linear
orthogonal basis.
A2) ∆t is small, which implies that the motion between t1
and t2 is small.
A3) C(u, v) is smooth and both the deformation and the
change of texture are smooth, allowing ∂2C

∂u∂t = ∂2C
∂t∂u and

∂2C
∂v∂t = ∂2C

∂t∂v .
For ease of explanation, we start from a fixed rigid object

under varying illumination. Then we consider the problems
of a moving rigid object under varying illumination and a
fixed deforming object under varying illumination (Theo-
rem 1). Next we consider a moving and deforming object
under fixed illumination (Theorem 2), and a moving and
deforming object under varying illumination (Theorem 3).
We prove that the image space of a moving and deforming
object under varying illumination is a locally multilinear.
When we keep higher order terms, the image space become
nonlinear.

2.2. Fixed Rigid Object under Varying Illumination

In [1, 10], the authors showed that, when a rigid object
is fixed with respect to the camera, the reflectance image I
of size P ×Q can be represented as

Figure 1. Pictorial representation depicting imaging framework.

I = lTBl(n) = Bl(n)×1 l, (1)

where the 2D tensor I ∈ R1×P×Q is the reflectance image,
l ∈ RNl×1 is the illumination coefficient vector determined
by the illumination conditions, Bl ∈ RNl×P×Q is the tensor
version of a set of basis images, n is the unit norm vector
at the reflection point, and ×n is called the mode-n prod-
uct [6]1. For a Lambertian object with attached shadows,
Nl ≈ 9. The bases for each pixel can be expressed as [1]

bi(nj) = ρjriYi(nj), i = 0, 1, . . . , (2)

where ρ encrypts the surface reflectance property at the re-
flection point, Yi is the spherical harmonics function, and
ri is a constant for each spherical harmonics order. For
each pixel, bi is a vector. Arranging the bi for all the pix-
els together will give the tensor Bl. When the Lambertian
reflectance property is not satisfied, higher orders of the
spherical harmonics functions will be needed [10].
2.3. Moving Rigid Object under Varying Illumina-

tion

Under assumptions (A1) and (A2), the authors in [14],
proved that the image space can be approximated by a bi-
linear function of the illumination and rigid motion param-
eters, i.e.,

It2 = (Bl|t1 + Bm|t1 ×2 m)×1 lt2 , (3)

where Bm|t1 ∈ R9×6×P×Q is the tensor version of the mo-
tion bases 2, and m = (∆TT, ∆Ω)T is the motion param-
eter vector. However, this requires the object to be rigid.

1The mode-n product of a tensor A ∈ RI1×I2×...×In×...×IN by a
vector V ∈ R1×In , denoted byA×nV, is the I1×I2×. . .×1×. . .×IN

tensor

(A×n V)i1...in−11in+1...iN
=

∑

in

ai1...in−1inin+1...iN
vin .

2The exact forms of bi, Bl, and Bm can be found in [1, 14]. Defining
them precisely requires introducing a lot of notation for which we lack



2.4. Deforming Object at Fixed Pose and under
Varying Illumination

Consider that the pose of the object is fixed with respect
to the camera, but that is is deforming. The surface of the
object is a function of time, i.e. C(u, v, t) : R2 × [0, T ) →
R3. Assume that the evolution of the surface obeys the fol-
lowing PDE:

∂C(u, v, t)
∂t

= β(u, v, t)N (u, v, t). (4)

The derivation of this model can be found in Section 2.1
of [11]. Thus, given the parameterization (u, v), the defor-
mation of the object is defined by the function β(u, v, t),
where N (u, v, t) is the surface normal at C(u, v, t). At the
time instance t, β(u, v, t) is a 2D function and can be de-
composed using most of the 2D transformation techniques,
including 2D unitary transforms, wavelet transforms, and
B-spline basis, among others. Assuming the deformation
of an object to be smooth over (u, v), most of the energy
of β(u, v, t) at time instance t would be concentrated in the
low frequency components. Decomposing β(u, v, t) using
the top ND bases, we have

β(u, v, t) = bd(t)TΦd(u, v), (5)

where Φd ∈ RND×1 is the vector of the top ND basis at
(u, v), and bd ∈ RND×1 encrypts the deformation at (u, v)
as a function of t. In the case that texture changes gradually
while deforming, we can model the change of texture using
a similar reasoning as

∂ρ(u, v, t)
∂t

= γ(u, v, t), (6)

and define γ(u, v, t) = bρ(t)TΦρ(u, v), (7)

where bρ ∈ RNρ×1 and Φρ ∈ RNρ×1. Then we have the
following theorem.

Theorem 1 Under Assumptions (A1), (A2) and (A3), the
image space of a fixed deforming object under varying
illumination is locally bilinear, with the illumination
subspace being bilinearly combined with the direct sum of
the deformation and texture subspaces.

Outline of the proof: Let A and B represent the same
object before and after deformation respectively, as shown
in Fig. 1. The ray from the optical center to a particular
pixel (x, y) intersects with the surface of the object at some
point. Before the object’s deformation, the ray intersects
with the surface at C(u1, v1, t1) (on A), and after deforma-
tion, it intersects at C(u2, v2, t2) (on B). During the defor-
mation, C(u2, v2, t1) (on A) evolves to C(u2, v2, t2) (on B).
Note that C(u2, v2, t2) may not overlap with C(u1, v1, t1) -
they are just on the same projection ray.

sufficient space. Our interest is in the forms of the expression only. This
paper can be understood without knowing the exact details of these terms.

From (1), we see that when the illumination coefficients,
li, are known, only the norm and the reflectance of the
surface point of interest affect the reflection intensity at
a particular pixel. The difference between N (u1, v1, t1)
and N (u2, v2, t2) consists of two parts. The first part is
the change from N (u1, v1, t1) to N (u2, v2, t1), which can
be approximated using a first order Taylor expansion at
C(u1, v1, t1), while the second part is due to the deforma-
tion from N (u2, v2, t1) to N (u2, v2, t2). Thus we can ex-
press the change in norm as

∆N = N (u2, v2, t2)−N (u1, v1, t1)

= JN |u1,v1,t1∆ +
∂N (u2, v2, t)

∂t
|t1∆t, (8)

where JN |u1,v1,t1 is the Jacobian matrix of the norm,
N (u, v, t), with respect to the parameters (u, v) at point
C(u1, v1, t1), and ∆ is the difference in the surface parame-
ters (u2, v2) and (u1, v1). The term ∂N (u2,v2,t)

∂t ∆t is due to
the deformation. Note that since texture changes gradually,
using a similar reasoning we have

∆ρ = ρ(u2, v2, t2)− ρ(u1, v1, t1)

= ∇ρ|Tu1,v1,t1∆ +
∂ρ(u2, v2, t)

∂t
|t1∆t. (9)

Thus, ∆ N and ∆ρ can be substituted into the expression
for the basis images in (2), which can be rewritten as
bi(u2, v2) = (ρ(u1, v1, t1) + ∆ρ)riYi(N (u1, v1, t1) + ∆N )

= bi(u1, v1) + ∆ρriYi(N (u1, v1, t1))
+ρ(u1, v1, t1)ri∇Yi(N (u1, v1, t1))∆N
+O(∆2). (10)

The last term is a higher order term and we will discuss it in
the later part of the derivation.

Let we now use a subscript w to denote the variables
in the world reference frame. Since Cw(u1, v1, t1) and
Cw(u2, v2, t2) are on the same ray (see Fig. 1), we can
represent the difference between them using a unit vector
r under the perspective camera model as

Cw(u2, v2, t2)− Cw(u1, v1, t1) = kr. (11)

The transformation between the world frame and the object
frame can be written as

Cw(u1, v1, t1) = RC(u1, v1, t1) + T,

Cw(u2, v2, t2) = RC(u2, v2, t2) + T. (12)

Note that the pose of the object is fixed during the deforma-
tion). Using (4),(5),(6), and (7), the evolution of the object
surface can be rewritten in a discrete format as
C(u2, v2, t2) = C(u2, v2, t1)

+bT
d (t1)Φd(u2, v2)N (u2, v2, t1)∆t,

ρ(u2, v2, t2) = ρ(u2, v2, t1) + bT
ρ (t1)Φρ(u2, v2)∆t.

(13)



Under Assumption (A2), which implies that the defor-
mation between the two consecutive frames is small, the
point C(u2, v2, t1) should be close to the point C(u1, v1, t1).
Thus, we may alternatively consider that the new point
C(u2, v2, t1) is on the tangent plane that passes through the
point C(u1, v1, t1), i.e.,
C(u2, v2, t1) = C(u1, v1, t1)+αuTu|u1,v1,t1+αvTv|u1,v1,t1 ,

(14)
where Tu|u1,v1,t1 represents the tangent Tu at (u1, v1, t1).
After a series of manipulations, we have (see Appendix)

At1

(
αu

αv

)
= −bT

d (t1)Φd

(
I− R−1rNT

NTR−1r

)
∆t, where

At1 = (I− R−1rNT

NTR−1r
)(bT

d (t1)ΦdJN∆t +NbT
d (t1)∇Φd∆t)

+(Tu|t1 , Tv|t1). (15)

Note that in (15), Tu, Tv,N ,JN ,R, r are computed at
t1 and Φd,∇Φd are constants in time. The first term
(I − R−1rNT

NTR−1r
)(bT

d ΦdJN∆t + NbT
d ∇Φd∆t) ∼ O(∆t),

while the second term (Tu|t1 , Tv|t1) ∼ O(1). Thus, using
Assumption (A2) that ∆t is small, the first term in the right
hand side of the expression of At1 in (15) can be ignored
with respect to the second term. Consequently, the solution
of (αu, αv) can be written as

(
αu

αv

)
= Bt1bd(t1)∆t, where

Bt1 = −(Tu, Tv)+(I− R−1rNT

NTR−1r
)NΦT

d , (16)

and (Tu, Tv)+ indicates the pseudo inverse of the non-
square matrix (Tu, Tv).

In (8), using Assumption (A2) to neglect the terms
O(∆t2) with respect to O(∆t) and Assumption (A3) for
smooth deformation, we have (see Appendix)
∂N
∂t
|u2,v2,t1∆t ≈ −(JN (C|(u, v))JN (Φd|(u, v))Tbd(t1)∆t. (17)

Thus, substituting (16) and (17) back into (8) and (9), the
change of the norm and ρ can be expressed as

∆N = (JN |u1,v1,t1Bt1 −∇C|u1,v1,t1∇Φd|Tu1,v1,t1)bd(t1)∆t,

∆ρ = ∇ρ|Tu1,v1,t1Bt1bd(t1)∆t + Φρ|Tu1,v1,t1bρ(t1)∆t. (18)

Thus, both ∆N and ∆ρ are linear functions of bd and bρ.
Substituting back into (10), and using tensor notation, we
will have

It2 = (Bl|t1 + Bdρ|t1 ×2

(
bd

bρ

)
∆t)×1 lt2 , (19)

where Bdρ|t2 ∈ RNl×(ND+Nρ)×P×Q is the tensor version
of the deformation and texture change basis. Thus, the im-
age space is a locally bilinear function of the illumination
parameters and the union of the deformation and texture
change parameters. The locality property comes because
this description is for a small deformation at a fixed pose.
¤

2.5. Moving and Deforming Object under Fixed Il-
lumination

Theorem 2 Under Assumptions (A1), (A2) and (A3), the
image space of a rigidly moving and deforming object under
fixed illumination is the direct sum of the motion, deforma-
tion and texture subspaces.

Outline of the Proof: Reconsider Figure 1. We still have

Cw(u2, v2, t2)− Cw(u1, v1, t1) = kr, (20)
Cw(u1, v1, t1) = RC(u1, v1, t1) + T,

Cw(u2, v2, t2) = ∆RRC(u2, v2, t2) + ∆T + T,

(21)

where r is the unit vector along the projection ray. Sim-
ilarly, the deformation of the object can still be described
using (13) as
C(u2, v2, t2) = C(u2, v2, t1) + β(u2, v2)N (u2, v2, t1)∆t

= C(u2, v2, t1)
+bT

d (t1)Φd(u2, v2)N (u2, v2, t1)∆t.(22)

Because the time interval between the two consecutive
frames is small, the motion and deformation are small. Us-
ing similar reasoning as used for deriving (14), we again
have
C(u2, v2, t1) = C(u1, v1, t1)+αuTu|u1,v1,t1+αvTv|u1,v1,t1 .

(23)
After a series of manipulations, we have (see Appendix)

At1

(
αu

αv

)
= (I− R−1rNT

NTR−1r
)(Ĉ1∆Ω−R−1∆T−NΦT

d bd(t1)∆t)),

where
At1 = (Tu, Tv) +

(I− R−1rNT

NTR−1r
)(bT

d (t1)ΦdJN +NbT
d (t1)∇Φd)∆t.(24)

Under similar reason used in deriving (16), we can again
neglect the second term in the expression of At1 in (24),
and the solution to (αu, αv)T can be obtained as(

αu

αv

)
= −(Tu, Tv)+(I− R−1rNT

NTR−1r
)

(Ĉ1∆Ω−R−1∆T−NΦT
d bd(t1)∆t)

, D∆Ω + E∆T + Fbd(t1)∆t. (25)

However, when there exists both rigid motion and defor-
mation, the temporal change of N (u2, v2) from t1 to t2
consists of two parts: one due to the deformation, and one
due to the rotation. In Appendix, we derived the temporal
change of norm from (4), which is purely due to deforma-
tion, i.e.,

∂N
∂t
|u2,v2,t1∆t|

∆Ω=0
≈ −∇C|u1,v1,t1∇Φd|Tu1,v1,t1bd(t1)∆t. (26)



The temporal change of normal due to the rigid rotation by
∆Ω is

∂N
∂t
|u2,v2,t1∆t|bd=0 ≈ −N̂ |u1,v1,t1∆Ω. (27)

Thus, substituting (25), (26) and (27) back into (8) and (9),
the change of the norm and ρ can be expressed as

∆N = (JN |u1,v1,t1D− N̂ |u1,v1,t1 )∆Ω + JN |u1,v1,t1E∆T

+(JN |u1,v1,t1F−∇C|u1,v1,t1∇Φd|Tu1,v1,t1
)bd∆t,

∆ρ = ∇ρ|Tu1,v1,t1
(D∆Ω + E∆T + Fbd(t1)∆t)

+Φρ|Tu1,v1,t1
bρ(t1)∆t. (28)

Thus, both ∆N and ∆ρ are linear functions of bd and bρ.
Substituting back into (10), and using tensor notation, we
will have

It2 = (Bl|t1 + Bmdρ|t1 ×2




V

ω

bd

bρ


 ∆t)×1 lt1 , (29)

where Bmdρ|t1 ∈ RNl×(6+ND+Nρ)×P×Q is the joint deforma-
tion, rigid motion and texture basis obtained by substituting
(28) into (10). ¤

2.6. Moving and Deforming Object under Varying
Illumination

Theorem 3 The image space of a rigidly moving and deforming
object under varying illumination is locally multi-linear, with the
illumination subspace being bilinearly combined with the direct
sum of the motion, deformation and the texture subspaces.

Outline of the Proof: When illumination is represented
as a function of t as lt, using augmented variables we can
have the following directly from (29):

It2 = Blmdρ|t1 ×1 lt2 ×2




V

ω

bd

bρ

1




∆t, (30)

where Bldmρ|t1 ∈ R(NL+1)×(6+ND+Nρ+1)×P×Q is the tensor
version of the joint illumination, deformation, rigid motion
and texture bases. Thus, when illumination, l, is fixed, the
local image space is a linear function of the union of the
motion, deformation and texture change parameters. The
result is valid in a local region around pose (R,T). ¤

3. Discussion of the Theoretical Results
3.1. Implications of the Assumptions

We used three assumptions for deriving Theorems 1, 2,
and 3. Assumption (A1) essentially says that we use a ba-

sis illumination model. This is widely used. For Lam-
bertian surfaces, the basis dimension is small, while non-
Lambertian surface requires higher dimensions. Also, the
basis function can be represented using spherical harmon-
ics, wavelets, and other orthogonal representations. Our
derivation does not need a specific choice, only that it is
a function of the surface normal. Assumption (A3) is again
not difficult to satisfy for most object surfaces. Assumption
(A2) requires that the time interval between two consecutive
frames to be small, which means that the motion, deforma-
tion, and texture change between the two frames is small.
This assumption means that the theoretical result describes
an image space in a local region, e.g. images in video se-
quences captured under frame rates between 15 and 30 fps.
It is used to approximate the 3D surface in a small neigh-
borhood by a tangent plane and to neglect higher powers of
∆t with respect to lower powers. If higher order terms of
∆t are retained, we can show the following:

Theorem 4 If the second order terms of ∆t are retained, the
image space of a rigidly moving and deforming object under
varying illumination will not be multi-linear but nonlinear.

Outline of the Proof: In equation (10), we kept the first
order term of ∆ and ignored the higher order terms. As
∆ ∼ O(∆t), when we keep the higher order terms of ∆t, ∆2

terms needs to be kept. From (25), we know that keeping
the term ∆2 will introduce not only the cross terms between
T, ∆Ω,bd, and bρ, but also their squares, leading the image
space to be not multi-linear, but completely nonlinear. ¤

Due to the assumption (A2), the result in (30) is model-
ing the local variation in the image appearance space. A col-
lection of such locally multi-linear manifolds can be used to
represent the global space.

3.2. Relation to Existing Methods

This theoretical study provides a rigorous proof for the
validity of many linear/multi-linear models of object ap-
pearance/shape representation used recently in computer vi-
sion. We can also understand the conditions under which
these popular models can be applied. We provide below
such an analysis, taking face representation and recogni-
tion as an example (since these models have been applied
to faces).

PCA: From (29) we can see that, when the illumination
and pose are fixed, the image space is linear in the shape
(deformation) and texture parameters, which encrypt the
identity. This proves the validity of the use of PCA under
such scenarios. It explains the relatively good performance
of PCA when applied to the face recognition problem un-
der fixed pose and illumination and poor performance when
illumination is changing. Although our derivation leads to
a locally linear model while PCA is globally linear, locally



Figure 2. Some representative illumination, motion, deformation and texture variation basis images of a 3D face model.

linear subspaces can be described by using a higher dimen-
sional global linear subspace. Thus, while the theory might
predict a small number of bases, PCA will need more bases.

AAM/ASM: AAM/ASM [4] represent shape and appear-
ance using a linear set of basis vectors, which are then
mapped non-linearly to the image space. Using our ana-
lytically derived bases, the image space can be obtained as
in (30) even with pose and illumination variations. This is a
simpler form than the AAM/ASM models.

MLM: In MLM [12, 13], different factors are assumed
to be multi-linearly combined. We proved that lighting is
indeed bilinearly combined with the direct sum of the mo-
tion, deformation and texture subspaces. Direct sum is a
special case of the multi-linear model with the coefficients
of the cross terms being zero. Thus, the multi-linear mod-
els are valid but they will end up approximating the direct
sum of the linear subspaces. Since this multi-linearity prop-
erty is local, MLM methods will be more accurate when
modeling local variations of the image space. It can be eas-
ily shown that the collection of local multi-linear manifolds
can be embedded into a higher dimension globally multi-
linear manifold, which provides the theoretical validation
for MLM.

Local Linearization: Probabilistic Appearance Model
(PAM) [8] uses a series of tangent planes along pose to ap-
proximate the manifold - thus it is also locally linear. Our
theoretical result not only validates this assumption, but also
provides an analytical description of this space. In [5], the
authors locally linearize the appearance manifold for track-
ing, but they obtain the linearized basis from a learning al-
gorithm. Again, we provide an analytical description of this
linear subspace, which can be used to obtain the bases in a
manner that is not dependent on the training data.

Non-linear approaches: In 3DMM, once the textured 3D
shape is obtained, it is combined with the illumination and
camera projection model, and thus the image pixel intensi-
ties are nonlinear in the shape and texture coefficients. This
is a more accurate representation (Theorem 4), but comes at
the cost of higher computation due to optimization on a non-
linear manifold. Non-linear manifolds is also the approach
taken in [7].

4. Experimental Results
Computation of Bases: We used a 3D face model ob-
tained from the 3DMM dataset to compute the analytically
derived bases, Blmdρ, in (30). We show some representative
basis images in Fig. 2. The first column in the motion bases
shows the bases for translation along the vertical axis, while
the second column shows in-plane rotation bases. For the
deformation and texture bases, we use 2D DCT basis func-
tions for Φd and Φρ, and show a few representative ones.

Image Synthesis using Theorem 3: In Fig. 3, we show
the comparison between the images synthesized with our
theory, and the ones synthesized by simulating the PDEs
in (4) and (6). We use a face model with uniform texture,
fix the illumination and pose, and then apply deformations
on the cheeks and around mouth using 2D DCT basis func-
tions. The texture change is effected over the entire face. In
the second row, we show the images synthesized using (30),
with the deformation bases, the texture variation bases, and
a combination of the two. For comparison, we also show the
corresponding images synthesized by simulating PDEs (4)
and (6) in the third row. There is very little visual difference
between the two.
Numerical Accuracy Analysis: To evaluate the theory
in a more precise manner, we performed a numerical er-
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Figure 4. Accuracy analysis of the theoretical model. The error is computed as the squared difference between the theoretically predicted
pixel intensities and the true pixel intensities, normalized by the true values, and taking its mean over the face region.

Figure 3. Comparison between the images synthesized with our
theory, and the ones synthesized by simulating the PDEs in (4)
and (6).

ror analysis. We chose some typical range of rigid motion,
deformation, and texture variation between two consecutive
frames in a video sequence. We computed the difference
between the theoretically predicted pixel intensities and the
true pixel intensities, normalized by the true values, and
took the mean of this normalized error over the face region
in the image. Assuming the face to be a hemisphere, we as-
sumed that in one second, the deformation will not exceed
5% of the radius of this hemisphere, and set 5%

30 frames as
one unit on the axis of deformation. Similarly, for the tex-
ture change, we assume the variance of the change will not
exceed 5% of the square of the mean value of the original
texture. For the rotation, we let that the maximum degree
the object can rotate in one second to be 30◦, which means
1◦ between two consecutive frames.

In Fig. 4, we plot the normalized error versus (a) de-
formation and texture variation, (b) deformation and rigid
motion, and (c) texture variation and motion. We choose
rotation along the vertical axis for the motion (as that is a
common motion of the face in video). Fig. 4 indicates that,
within a typical range of motion, deformation, and texture

variation, the normalized error between the predicted value
and the true value will not exceed 6%. This is the worst case
performance and happens when the object is deforming and
rotating. This is justified by the theory since we neglect
higher order changes due to deformation and rigid motion
in (15) and (24).
Application to Tracking: As an application of the theory,
we use it for tracking faces under illumination and expres-
sion variations (Figure 5). We use Levenberg-Marquardt
method for minimizing the difference between each input
frame and the predicted one from (30), and alternatively
minimizing over the illumination subspace and the direct
sum of the pose, deformation and texture subspace. In Fig.
5, we show the 2D location of the face and the pose param-
eters. Pose parameters are represented as the Euler angle
of the face with respect to the frontal one, following the “z-
x-z” convention. Illumination and deformation parameters
are not shown due to lack of space.

Figure 5. Examples of tracking using the theoretical model on real-
data under changes of pose, lighting and expressions. In addition
to the 2D location, we also obtain the 3D pose (as shown in the
figure), illumination and deformation parameters.

5. Conclusions
In this paper, we analyzed the accuracy of linear and

multi-linear object representation models from the funda-
mental physical laws of object motion and image forma-
tion. We proved that the image appearance space is lo-



cally multilinear, with the illumination subspace being bi-
linearly combined with the direct sum of the motion, defor-
mation and texture subspaces. When higher order terms are
not neglected, the image space becomes nonlinear. Using
this result, we discussed the validity of many of the linear
and multi-linear approaches existing in the computer vision
literature, including PCA, AAM/ASM, PAM, MLM, and
3DMM. Experimental accuracy analysis of the theoretical
results were also presented.

Appendix

Derivation of (15) Substituting (12) into (11), we have

C(u2, v2, t2)− C(u1, v1, t1) = kR−1r. (31)

Substituting (13) into (31), we have

αuTu + αvTv + bT
d Φd(u2, v2)N (u2, v2, t1)∆t = kR−1r. (32)

Applying Taylor expansion, we have

bT
d Φd(u2, v2) = bT

d Φd(u1, v1) + bT
d ∇Φd|u1,v1,t1

(
αu

αv

)
,

N (u2, v2, t1) = N (u1, v1, t1) + JN|u1,v1

(
αu

αv

)
. (33)

Thus, bT
d Φd(u2, v2)N (u2, v2, t1) can be expressed as

(
bT

d Φd + bT
d ∇Φd

(
αu

αv

)) (
N + JN

(
αu

αv

))
= bT

d ΦdN

+bT
d ΦdJN

(
αu

αv

)
+NbT

d ∇Φd

(
αu

αv

)
+ o(αu, αv), (34)

where all the terms are computed at (u1, v1, t1), and the
last term is a high order term thus can be ignored. Substitut-
ing (34) into (33) and after some algebraic manipulations,
we have (15).

Derivation of (17) Starting with (4) and using different
differential geometric properties of a surface, we get

∂N
∂t

=
βuN × Cv + βvCu ×N

‖Cu × Cv‖ . (35)

Therefore, using (5) to compute βu and βv , we prove
(17). The detailed proof is uploaded as supplementary ma-
terial.

Derivation of (24) Substituting (21) into (20), we have

∆R(C(u1, v1, t1) + bT
d Φd(u2, v2)N (u2, v2, t1)∆t

+αuTu + αvTv)− C(u1, v1, t1) = kR−1r−R−1∆T. (36)

Using (34) to approximate bT
d Φd(u2, v2)N (u2, v2, t1), we

have
(
∆R (Tu, Tv) + bT

d Φd∆RJN∆t + ∆RNbT
d ∇Φd∆t

) (
αu

αv

)

= (I−∆R)C(u1, v1, t1)− bT
d Φd∆RN∆t−R−1∆T + kR−1r, (37)

where all the N ,JN ,Φand∇Φ are at (u1, v1, t1) and sub-
scripts are discarded. Solving and substituting back into
(37), we have (24).
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