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Abstract

Most work in computer vision has concentrated on studying
the individual effects of motion and illumination on a 3D
object. In this paper, we present a theory for combining
the effects of motion, illumination, 3D structure, albedo,
and camera parameters in a sequence of images obtained
by a perspective camera. We show that the set of all Lam-
bertian reflectance functions of a moving object, illuminated
by arbitrarily distant light sources, lies ”close” to a bilin-
ear subspace consisting of nine illumination variables and
six motion variables. This result implies that, given an arbi-
trary video sequence, it is possible to recover the 3D struc-
ture, motion and illumination conditions simultaneously us-
ing the bilinear subspace formulation. The derivation is
based on the intuitive notion that, given an illumination di-
rection, the images of a moving surface cannot change sud-
denly over a short time period. We experimentally compare
the images obtained using our theory with ground truth data
and show that the difference is small and acceptable. We
also provide experimental results on real data by synthesiz-
ing video sequences of a 3D face with various combinations
of motion and illumination directions.

1. Introduction
Motion and illumination are two fundamental features used
for analyzing video sequences. Traditionally, they have
mostly been studied separately. Optical flow [6] methods
deal with motion, but are based on the assumption that
the intensity of the same point does not change over time.
Structure from Motion (SfM) [3, 5] is used for 3D mod-
elling by exploiting the motion information in a video se-
quence, but does not consider illumination changes. Other
techniques like Shape from Shading (SfS) [4, 7, 11] rely on
the illumination information in a single image to estimate
the 3D structure of a scene. Photometric stereo [12] meth-
ods consider varying illumination but require the object to
be fixed relative to the camera. Negahdaripour [10] pro-
posed a method for optical flow computation by combining
geometric and radiometric cues. Recently, Zhang et al [14]
have combined motion and varying illumination by unify-

∗The work was supported from the Initial Complement funds provided
by the Bourns College of Engineering, University of California, Riverside.

ing Structure from Motion, Photometric Stereo, and multi-
view stereo in an optimization framework. Their work is
essentially based on optical flow, but does not provide an ex-
plicit expression relating the image, and the motion, struc-
ture and illumination variables. In [8], the authors proposed
a method for estimating the shape and radiance of the scene,
but under constant illumination.

A number of researchers have shown that the set of im-
ages that an object can produce under varying illumination
lies in a low-dimensional linear subspace. Shashua [12] and
Moses [9] derived a 3D linear representation of the set of
images ignoring attached shadows. Belhumeur and Krieg-
man [2] have shown that the set of images of an object un-
der arbitrary illumination forms a convex cone in the space
of all possible images. Basri and Jacobs [1] analytically
derived a 9D spherical harmonics based linear representa-
tion of the images produced by a Lambertian object with at-
tached shadows. This 9D space is an approximation of the
infinite dimensional space derived in [2]. However, these
methods focus primarily on the problem of object recogni-
tion, and are restricted to the analysis of single images. Ex-
tending the work in [1] directly to video sequences would
require repeating the processes described to each image sep-
arately. However, this is inefficient since the images of a
moving object illuminated from a given light source over a
short time period would be related based on the motion of
the object. We exploit this fact to derive a joint illumination
and motion space of video sequences.

In this paper, we derive, from first principles, a theory
to characterize the interaction of motion and illumination in
generating image sequences of a 3D object. We show that
the set of all Lambertian reflectance functions of a moving
object with attached shadows at any position, illuminated
by arbitrarily distant light sources, lies ”close”1 to a bilin-
ear subspace consisting of nine illumination variables and
six motion variables. Our work extends the results in [1] to
video sequences. We consider the case of continuous mo-
tion, and represent variations in surface norms and albedo
upto a first order approximation. The bilinear subspace for-
mulation can be used to simultaneously estimate the mo-
tion, illumination and structure from a video sequence. Us-
ing this result, we synthesize video sequences of a 3D face

1The Lambertian reflectance function actually lies in a nonlinear space,
which is approximately bilinear, as we show later in the paper.
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with various combinations of motion and illumination di-
rections.

The rest of the paper is organized as follows. Section
2 presents previous work on the Lambertian Reflectance
Linear Subspace (LRLS) method for modelling illumina-
tion in an image. It also provides an intuitive motivation for
our theoretical derivation. Section 3 presents the theoretical
derivation of the bilinear space of motion and illumination
variables, with some of the mathematical details in the Ap-
pendix. In Section 4, experimental analysis of the accuracy
of the theory and image synthesis results are presented. Sec-
tion 5 concludes the paper and highlights future work.

2. Previous Work and Motivation
Before we derive our theoretical results, we first review
some basic definitions and previous work. Lambertian sur-
faces reflect light in all directions. According to Lambert’s
cosine law, the brightness of a specific point on Lambertian
surface is proportional to the inner product of the surface
normal and the incidence direction, as well as the energy
per unit area on the surface, i.e,

I = Aρ max(cosθ, 0),

where I is the reflectance intensity, A is the incident ray
intensity, ρ is the albedo of the surface point , and θ is the
angle between the surface norm and the direction of the in-
cident ray.

The authors in [1] have proved that, when the 3D model
is fixed, the set of the reflectance images can be decomposed
by an infinite series of spherical harmonics functions. How-
ever, as the lower order spherical harmonics capture more
energy, it is possible to use only a few spherical harmonics
to approximate the image under varying illumination con-
ditions. In the paper, they proved that the image can be ap-
proximated by a linear combination of the first nine spher-
ical harmonics, which accounts for 99.22% of the energy.
That is, the image lies close to a 9D linear subspace. They
also show that, the reflectance intensity for an image pixel
(x, y) can be approximately expressed as

I(x, y) =
∑

i=0,1,2

∑
j=−i,−i+1...i−1,i

lijbij(n), (1)

where I is the reflectance intensity of the pixel, i and j

are the indicators for the linear subspace dimension in the
spherical harmonics representation, lij is the illumination
coefficient determined by the illumination direction, and bij

are the basis images. The basis images can be represented
in terms of the spherical harmonics as

bij(n) = ρriYij(n), i = 0, 1, 2; j = −i, . . . , i, (2)

where ρ is the albedo at the reflection point, ri is constant
for each spherical harmonics order, Yij is the spherical har-

monics function, and n is the unit norm vector at the reflec-
tion point (please refer to [1] for more detail). Thus, (1)
relates the 3D structure of the object (in terms of surface
normals), the illumination direction and albedo to the gen-
erated image. However, it does not consider the motion of
the object relative to the camera. For brevity, we will re-
fer to the work in [1] as the Lambertian Reflectance Linear
Subspace (LRLS) theory.

The LRLS theory, as described in [1], is suitable for the
situation that the 3D model and position are fixed and only
illumination changes. This is because the basis images do
not change as long as the 3D model and it’s position are
fixed. This works for still images, but when we consider the
situation that the rigid object is moving, the basis images,
bij , change from frame to frame. That is to say, for dif-
ferent time instances, the frames are not in the same linear
subspace. If we want to use the method in [1] directly to
video sequences, the basis images would have to be calcu-
lated for each frame. This is not only time-consuming, but
also inefficient because it does not take into account the fact
that the images of the moving object would be related over
a short period of time. In this paper, we show how to take
into account the motion of object so as to combine the ef-
fects of motion, illumination, and 3D structure into a single
framework.

3 Theoretical Derivation
In order to deal with both illumination and motion, we di-
vide the problem into two stages. In the first stage, the ob-
ject’s motion is considered, and the change in its position
from one time instance to the other is calculated. We re-
fer to this change of position as the coordinate change of
the object. Then, in the next stage, we consider the effect
of the incident illumination ray, which is projected onto the
object, and reflected according to the Lambert’s cosine law.
We will use the results in Basri and Jacobs’ work [1] for the
second stage of the problem, and incorporate the effect of
the motion.

Lambert’s cosine law relates the direction and intensity
of the light ray incident at a point of a 3D object, the albedo
at the point and the surface normal, to the reflectance in-
tensity at an image pixel that corresponds to the 3D surface
point. If the 3D object is moving, then different points on
that object can correspond to the same image point, i.e, they
lie on the same ray passing through the image point. Let P
and Q be two such points on the object that project to the
same image point. Direction of illumination remaining con-
stant, we need to estimate the change in the surface normal
and albedo from point P to point Q in order to compute the
reflectance intensity at the pixel as generated by this point.
Our derivation of the bilinear subspace depends upon es-
timating the change in surface norm and albedo, which in
turn depends upon the motion of the object.

Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) 

1550-5499/05 $20.00 © 2005 IEEE 



3.1 Problem Formulation
In our problem, we need to consider only the relative mo-
tion between the camera and the object. We assume a per-
spective projection model for the camera, and we will also
assume that the focal length, f of the camera is the only in-
trinsic parameters2. Hence, we fix the origin of the frame
of reference to the center of the projection of the camera,
the z-axis to be the optical axis, and consider that it passes
through the center of the image.

For the moment, assume that at time instance t1 we know
the 3D model of the object, its pose, and the illumination
condition in terms of the coefficients lt1ij . Without loss of
generality, we also assume that the pixel (x, y) corresponds
to the point P1 at t1. Thus, from the LRLS theory, we have
the reflectance intensity for the pixel (x, y) as:

I(x, y, t1) =
∑

i=0,1,2

∑
j=−i,−i+1...i−1,i

lt1ij bij(nP1
). (3)

Let us define the the motion of the object in the above
reference frame as the translation T = (Tx, Ty, Tz)

T of the
centroid of the object and the rotation Ω = (ωx, ωy, ωz)

T

about the centroid. At the new time instance t2, the illu-
mination can change and is represented in terms of the co-
efficients lt2ij . We will now derive the relationship between

I(x, y, t1), I(x, y, t2), T, Ω, lt1ij , and lt2ij .

3.2 Computation of the new basis image
Let A and B represent the same object before and after mo-
tion respectively, as shown in Fig. 1. Consider the ray from
the optical center to a particular pixel (x, y). We can find
its intersection with the surface of the object by extending
the ray. With respect to the camera, the direction of this
ray does not change. Before the object’s motion, the ray in-
tersects with the surface at P1 (on A), and after motion, it
intersects at P2

′ (on B). P1 (on A) moves to P1
′ (on B),

and P2 (on A) moves to P2
′ (on B). Note that P2

′ may not
overlap with P1; they are just on the same projection ray.
We will follow the convention of representing a point after
motion with a prime (′).

We first define some notation required for our derivation.
Let

JP1
= J

(
∂nP1

∂P

)
and ∆ = P2 − P1 =


 ∆x

∆y

∆z


 ,

where JP is the Jacobian matrix of the norm, nP, with re-
spect to a point, P ∈ R

3 on the surface of the object, and ∆

is the difference in the coordinates of P2 and P1 (Hence-
forth we will refer to ∆ as the coordinate change).

From (1) and (2), we see that when the illumination co-
efficients, lij are known, only the norm and the albedo of

2This assumption can be relaxed.

Figure 1: Pictorial representation showing the motion of the
object and its projection.

the surface point of interest affects the reflection intensity
at a particular pixel. The change in norm and albedo is ob-
tained using the Jacobian matrix and gradient at the point of
interest, as well as the coordinate change, which in turn can
be derived from the motion of the object.

The norm changes from P1 to P2, and again from P2

to P2
′. The first change is due to the fact that P2 is a dif-

ferent point on the surface, while the second change is due
to the motion of the surface. Hence the difference of nP1

and nP′

2
is a function of the spatial (from nP1

to nP2
) and

temporal (from nP2
to nP′

2
) coordinates. Using the coordi-

nate change ∆ and the Jacobian matrix of norm at P1, we
are able to calculate the first order difference between nP1

and nP2
. Using the motion information, we can obtain the

difference between nP2
and n′

P2
. The albedo changes from

P1 to P2, but is the same for P2 and P2
′. Hence the dif-

ference of ρP1
and ρP′

2
is a function of spatial coordinates

only, and can be obtained using the gradient of albedo. We
can express the change in norm and albedo upto a first order
approximation as

∆n = nP′

2
− nP1

= JP1
∆ +

∂nP2

∂t
∆t, (4)

and
∆ρ = ρP′

2
− ρP1

= ∇ρP1
∆, (5)

where ∇ρP1
is the gradient of ρ at point P1. Thus, ∆n

and ∆ρ can be substituted into the expression for the basis
images in (2), which can be rewritten as

bij(nP′

2
) = (ρP1

+ ∆ρ)riYij(nP1
+ ∆n)

= bij(nP1
) + ∇ρP1

riYij(nP1
)∆

+ρP1
ri∇Yij(nP1

)∆n + o(∆). (6)

The last term is a higher order term and can be ignored when
∆ is small. Substituting ∆ from (4), we see that the basis
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image is a linear function of ∆. (
∂nP2

∂t
is not a function of

∆, as we will show latter.)

3.3 Computation of coordinate change ∆

Since P2
′ and P1 are on the same ray, we can represent

the difference between them using a unit vector u under the
perspective camera model, i.e.,

P2
′ − P1 = ku, (7)

where

u =
1√

x2 + y2 + f2


 x

y

f


 , (8)

and k is a scalar. Since the motion of the object is consid-
ered as a pure rotation with respect to its centroid and a pure
translation of the centroid, the new coordinate of P2 can be
expressed as

P2
′ = R(P2 − T0) + T0 + T, (9)

where R is the Rodrigues rotation matrix obtained from the
rotation Ω with respect to the centroid, and T0 is the posi-
tion of the centroid of the object. Substituting it into (7), we
get

ku = R(P2 − T0) + T0 + T − P1. (10)

Under the assumption of small motion, we have an addi-
tional constraint. We may consider the new point P2 to be
on the tangent plane that passes through the original inter-
section point P1, i.e.,

nT
P1

(P1 − P2) = 0. (11)

Using (10) and (11) and after some algebraic manipulation
(please refer to Appendix), we can show that

∆ =
(
R−1 − I

)
(P1 − T0) − R−1T

−R−1 nT
P1

((
R−1 − I

)
(P1 − T0) − R−1T

)
nT

P1
R−1u

u.

(12)

The coordinate change, ∆, obtained in (12) captures the
effect of the motion. However, as it is a nonlinear function
of the object motion variables T and Ω, its complex form
makes it difficult to analyze. Henceforth we will denote this
as ∆nl.

Since the motion is small, we can simplify the above
equation using certain approximations. This will allow us to
interpret the joint effect of the motion and illumination ana-
lytically, while sacrificing little in terms of accuracy. Using
a series of mathematical approximations, we can obtain ∆

as a linear function of the motion variables (please refer to

Appendix) as:

∆ ∼= P̂Ω + T −
1

uTnP1

unT
P1

P̂Ω −
1

uTnP1

unT
P1

T

=

(
I −

1

nT
P1

u
unT

P1

) (
P̂Ω− T

)
∆
= C(P̂Ω− T), (13)

where P̂ = (P1 − T0)∧3

We will refer to this as ∆l. Henceforth, when we use ∆

we will refer to ∆l; when required to be specific, we will
mention ∆l and ∆nl.

3.4 Temporal change of norm
In order to obtain the change of norm ∆n, we still need
to compute the effect of temporal change on the right hand
side (RHS) of (4). Using the assumption of small motion,
we can compute:

∂nP2

∂t
∆t =

∂(nP1
+ JP1

∆)

∂t
= Ω× (nP1

+ JP1
∆)

= Ω× nP1
+ o(ΩT) ∼= (−nP1

)∧Ω

∆
= −N̂Ω. (14)

As ∆ is a linear function of the motion variables Ω and T,
the cross product of Ω and JP1

∆ is a second order term

and can be ignored when the motion is small. Thus ∂nP2

∂t

is not a function of ∆, as claimed at the end of section 3.2.

3.5 Bilinear space of motion and illumination
Substituting (13) and (14) into (4), we get a linear expres-
sion for ∆n as a function of motion variables, i.e.,

∆n =
(
JP1

CP̂ − N̂
)

Ω− JP1
CT. (15)

So far, we have expressed the coordinate and norm
change as linear expressions of the motion variables. Sub-
stituting (13) and (15) into (1) and (6), which contain the
illumination variables, we have

I(x, y, t2) =
∑

i=0,1,2

∑
j=−i,−i+1...i−1,i

lt2ij bij(nP′

2
), (16)

where
bij(nP′

2
) = bij(nP1

) + AT + BΩ, (17)

A = −ri (∇ρP1
Yij(nP1

) + ρP1
∇Yij(nP1

)JP1
)C,

and
B = −AP̂ − riρP1

∇Yij(nP1
)N̂.

3We define the skew symmetric matrix of a vector X =

�
�

x1

x2

x3

�
� as

X
∧

= X̂ =

�
�

0 −x3 x2

x3 0 −x1

−x2 x1 0

�
�

.
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In (17), bij(nP′

2
) are the basis images after motion. The

first term, bij(nP1
), are the original basis images before

motion. It is only determined by the object model and does
not change with the variation of illumination. The illumi-
nation change is reflected in the change of the coefficients
from lt1ij to lt2ij . The effect of the motion is reflected in
AT+BΩ, where the first term describes the effect of trans-
lation, and the second term describes the effect of rotation.
Substituting (17) into (16), we see that the new image spans
a bilinear space of the motion variables and illumination
variables.

When the illumination changes gradually, the result can
be simplified by using the Taylor series to approximate the
illumination coefficients as lt2ij = lt1ij + ∆lij . The bilinear
space now becomes a combination of two linear subspaces,
defined by the motion and illumination variables as

I(x, y, t2) = I(x, y, t1) +
∑

i=0,1,2

∑
j=−i,...,i

lt1ij (AT + BΩ)

+
∑

i=0,1,2

∑
j=−i,...,i

∆lijbij(nP1
). (18)

If the illumination does not change from t1 to t2 (often a
valid assumption for a short interval of time), the new image
at t2 spans the linear space of the motion variables, since the
third term in (18) is zero.

3.6 Discussion
This bilinear space result integrates the effects of illumina-
tion and motion in generating an image from a 3D object.
Moreover, the shape of the object is encoded in the A and
B matrices, and in bij(nP1

). The camera intrinsic parame-
ters are implicitly present in ∆ (thus in A and B) through
u. Therefore, Equations (16) and (17) integrate motion, il-
lumination, 3D structure, albedo and camera intrinsic para-
meters into one single framework. When the object does
not move, the second and third motion terms of the basis
image bij(nP′

2
) are zero, and the result is the same as the

one in Basri and Jacobs’ work [1], a 9D Lambertian Re-
flectance Linear Subspace. When the illumination remains
the same, the reflectance image spans a linear subspace of
motion variables. When the illumination and motion vari-
ables all change, the image space is bilinear. Thus the joint
illumination and motion space for a sequence of images
is bilinear with (approximately) nine illumination variables
and six motion variables. In [13], the authors assumed that
face images lie in a multilinear space of illumination, view
point, identity and expression variables, and then used Mul-
tilinear Independent Components Analysis (MICA) to learn
and recognize faces. Our result provides a theoretical un-
derpinning for this assumed model considering only pose
and illumination.

Fig. 2 shows the effect of approximating the nonlinear
function ∆ in (12) with a linear approximation. We plot the

−1
−0.5

0
0.5

1

0
0.2

0.4
0.6

0.8
0

1

2

3

4

5

6

7

8

9

x 10
−3

RotationIllumination

−1
−0.5

0
0.5

1

0
0.2

0.4
0.6

0.8
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

RotationIllumination

(a) (b)

Figure 2: (a) shows the normalized error for one particular
pixel between true intensity and the one with linear approx-
imation of ∆ in (13). (b) shows the normalized error for
the same pixel between the true intensity and the one with
nonlinear approximation of ∆ in (12)

difference in the image intensity at a particular point as a
function of lt111 and ωy . The rotation range is defined as in
Section 4, and the illumination changes in a typical range.
We take the intensity obtained from the LRLS method as the
true value. The difference in Fig. 2(a) is computed between
the true value and the intensity obtained with the linear ex-
pression of ∆ (using (13)) and normalized w.r.t. the true
one. The difference in Fig. 2(b) is computed between the
true value and the intensity obtained with the nonlinear ex-
pression of ∆ (using (12)) and also normalized w.r.t. the
true one. As can be seen, there is no perceptible difference
between the bilinear and nonlinear image spaces.

4 Experimental Analysis
In this section, we experimentally analyze the theoretical
results obtained above. Specifically, we show the accuracy
of an image obtained by the above model with respect to the
true image. We also show the results of synthesized images.

The above derivation is based on the small motion as-
sumption which is used in three places. First, it is used
to obtain (11) by making the tangent plane approximation.
Next, the small motion assumption is used to obtain the lin-
ear approximation of (13). The third place where it is used
is the first order approximation of the norm and albedo. We
show that the effect of this assumption on the resultant video
sequences is very small.

For the sake of brevity, we show the effect of the transla-
tion along and rotation about y-axis on the change of albedo,
norm and ∆. We also compare the synthesized image with
those obtained with LRLS theory. The results are similar for
other combinations of motion. For the experimental error
analysis in Fig. 3, the translation is normalized with respect
to the width of the face, and the unit of the rotation is de-
gree. In addition, the initial pose is fixed as the front view,
and the illumination is fixed from the front of the face. In
this experiment, we calculated the errors in a typical motion
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Figure 3: (a) Normalized difference of the linear and nonlinear coordinate change,
|∆l−∆nl|
|∆nl|

. (b) Normalized difference

of the norm, �
�
�

n
P′

2

−n̄
P′

2
�
�
�

�
�
�

n̄
P′

2
�
�
�

, where nP′

2
is the first order approximation of the norm at point P2

′ with linearized coordinate

change, and n̄P′

2
is the true value of the norm at point P2

′. (c) Normalized difference of the albedo change, |ρP2
−ρ̄P2 |

�
�
�

ρ̄
P′

2
�
�
�

,

where ρP2
is the first order approximation of the albedo at point P2

′ with linearized coordinate change, and ρ̄P′

2
is the true

value of the albedo at point P2
′. (d) Normalized difference of the synthesized image,

|I(.,.,t2)
l−I(.,.)LRLS|

|I(.,.)LRLS| , where I(., ., t2)
l

is the image generated by linear coordinate change ∆l, and I(., .)LRLS is the image obtained with the LRLS theory. (e)

Normalized difference of the synthesized image,
|I(.,.,t2)

nl−I(.,.)LRLS|
|I(.,.)LRLS| , where I(., ., t2)

nl is the image generated by the
nonlinear coordinate change ∆nl. (f) Normalized error as in (d), plotted as a function of time for a video sequence.

range. We assume the largest distance the face can move
along the positive and negative directions of y axis in one
second is half of the width of the face. We also assume that
the largest angle the face rotates in one second is 30◦. Us-
ing the convention of 30 frames per second, we can get that
the maximum translation between the consequent frames is
0.5
30 = 0.0167 of the width of the face (henceforth referred
to as 0.0167 normalized translation unit), and the maximum
rotation between consequent frames is 30◦

30 = 1◦. So, we
calculate the error in the range of -0.020 normalized trans-
lation units to +0.020 normalized translation units, and the
rotation from −1.00◦ to +1.00◦. In addition, because of the
discontinuity effects of the extremities of the face (where
our theory is not valid), there maybe a lot of points with
large error. To avoid the bias caused by these points, we
represent the total error using the median of the errors of all
the points.

In Fig. 3, (a) depicts the difference between ∆nl and ∆l

normalized w.r.t. ∆nl. Within the typical motion range de-

fined above, the largest relative error of the linear solution
(w.r.t. the nonlinear solution) is about five percent. Next, in
Fig. 3(b) and 3(c), we compute the error introduced by the
first order approximation of nP′

2
and ρP′

2
(see (4) and (5)).

We compute the normalized error as the difference of these
variables obtained using our theory and those obtained us-
ing the LRLS theory in [1] (see Section 2) and normalized
w.r.t. the LRLS ones obtained for each image separately.
Fig. 3(d) gives the normalized error of the image obtained
with the bilinear approximation of (16), and (17). Typically,
the motion between the consecutive frames is much smaller
then the extremities of the above range; hence the difference
in practice is about 2 ∼ 3%. Moreover, if we consider only
rotation, the error at the extremities of the above range is
1 ∼ 2%. (See Fig. 2(a) and 2(b)). Fig. 3(e) computes the
normalized error of the images obtained with the nonlinear
expression of coordinate change in (12). The normalized
error of the images obtained with linear coordinate change
(13) in Fig. 3(d) and nonlinear coordinate change (12) in
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Fig. 3(e) are very similar, which validate the approxima-
tions in the linearization part of the derivation.

Finally, we synthesized a video sequence of rotating face
with our theory and LRLS theory respectively. Fig. 3(f)
gives the normalized error of the video sequence synthe-
sized with our theory. The maximum error is about 5%,
though, as we show next, there is no perceptible difference
in image quality. 4 Moreover, the computational complex-
ity for generating a sequence of images using our theory
is much lower than that using the LRLS theory. The time
taken to compute the first frame is the same in both cases;
for subsequent frames LRLS has to repeat the same proce-
dure while our approach uses the bilinear space of (16) and
(17), the computation of which is very fast. In our exper-
iment, generating each frame using LRLS theory will take
∼ 15 − 20 seconds, while generating 20 frames with the
bilinear space take only ∼ 20 − 25 seconds.

Next, we applied our theory to a 3D face to synthesize
image sequences for different combinations of motion and
illumination directions using bilinear space theory. In Fig.
4, the pose of the 3D face is fixed and only illumination
changes. From (16) and (17), T and Ω are zero, basis im-
ages bij remain the same, and only lij change. Thus all the
images lie in a linear subspace of lij . The results obtained
here are the same as using the LRLS theory. In Fig. 5, il-
lumination is fixed but pose changes, thus lij are fixed and
bij is a linear function of T and Ω; thus I(x, y, t2) lies in
a linear subspace of the motion variables. For comparison,
we also show the results using the LRLS theory repeated for
each pose. There is no perceptible difference between the
image synthesized by the two methods.

Figure 4: Reflectance images under fixed pose and rotating
illumination. All these images lie in a linear subspace of
illumination variables.

In Fig. 6, the face is moving and the illumination always
comes from the front of the face, thus bij is a linear func-
tion of T and Ω, and I(x, y, t2) is the combination of bij

with varying coefficients lij . The generated images lie in a
bilinear space of the illumination and motion variables.

5 Future Work and Conclusions
In this paper, we have shown that the joint space of mo-
tion and illumination variables lies “close” to a bilinear sub-
space consisting of (approximately) nine illumination vari-

4The periodicity appears because we do the reinitialization for every 20
frames.

Figure 5: Reflectance images of the face rotating along the
vertical axis under fixed illumination. The images in the
upper row are generated by our theory, and the images in
the lower row are generated by the LRLS theory repeated
for each pose.

Figure 6: Reflectance images of a moving face with chang-
ing illumination directions. Illumination changes in the
same way as pose, and always comes from the front of the
face. The images are generated using the bilinear space of
motion and illumination variables.

ables and six motion variables. The main novelty of our
work is to formulate the combined effect of motion and il-
lumination in the reflectance image. A detailed derivation
of the bilinear space from first principles is presented. Ex-
perimental analysis of the theory and synthesized results of
face images under varying motion and illumination are pre-
sented. Future work will involve joint estimation of 3D mo-
tion, illumination and structure from a video sequence, 3D
model based tracking and object recognition across illumi-
nation and pose variations. We also to plan to extend the
theory for the analysis of deformable objects in video se-
quences.

Appendix A Derivation of (12)
Equation (12) is the nonlinear solution of ∆ from the Equa-
tions (10) and (11) in Section 3. Substituting the expression
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of P2 from (10) into (11), we can solve for k as

k = −
nT

P1
((R−1 − I)(P1 − T0) − R−1T)

nT
P1

R−1u
. (19)

Substituting back into (10), P2 can be expressed as

P2 = −R−1 nT
P1

((R−1 − I)(P1 − T0) − R−1T)

nT
P1

R−1u
u

+(R−1 − I) (P1 − T0) − R−1T + P1. (20)

Thus, the coordinate difference between P2 and P1

∆ =
(
R−1 − I

)
(P1 − T0) − R−1T

−R−1 nT

P1 � R−1

−I � (P1−T0)

nT

P1
R−1u

u− R−1 nT

P1
R−1T

nT

P1
R−1u

u.(21)

from which (12) follows.

Appendix B Derivation of (13)
When the motion is small, the inverse of the Rodrigues Ro-
tation matrix, R−1, can be obtained from −Ω. So, the first
term in the RHS of (21) can be rewritten as

(
R−1 − I

)
(P1 − T0) ∼= (P1 − T0)∧


 ωx

ωy

ωz


 ∆

= P̂Ω.

(22)

For the third term in (21), we have

R−1 nT
P1

(
R−1 − I

)
(P1 − T0)

nT
P1

R−1u
u ∼= R−1 nT

P1
P̂Ω

nT
P1

R−1u
u

=
1

nT
P1

R−1u
R−1unT

P1
P̂Ω. (23)

Since u is a unit vector, each of it’s components is each
less than or equal to 1. However, due to the small motion
assumption, the elements of Ω are far less than 1. Thus,
R−1u ∼= u. Substituting back into (23), we have

R−1 nT
P1

(
R−1 − I

)
(P1 − T0)

nT
P1

R−1u
u ∼=

1

nT
P1

u
unT

P1
P̂Ω. (24)

Using similar reasoning for the fourth term in (21), we have

R−1 nT
P1

R−1T

nT
P1

R−1u
u =

1

nT
P1

u
unT

P1
R−1T. (25)

Finally, R−1T ∼= T by neglecting the terms which are
products of the component of Ω and T. Substituting back
into (21), we have

∆ ∼= P̂Ω−
1

nT
P1

u
unT

P1
P̂Ω− T−

1

nT
P1

u
unT

P1
T

=

(
I −

1

nT
P1

u
unT

P1

)(
P̂Ω− T

)
. (26)
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