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Abstract

Most of the existing works on human activity analysis
focus on recognition or early recognition of the activity la-
bels from complete or partial observations. Predicting the
labels of future unobserved activities where no frames of
the predicted activities have been observed is a challenging
problem, with important applications, which has not been
explored much. Associated with the future label prediction
problem is the problem of predicting the starting time of the
next activity. In this work, we propose a system that is able
to infer about the labels and the starting times of future ac-
tivities. Activities are characterized by the previous activity
sequence (which is observed), as well as the objects present
in the scene during their occurrence. We propose a network
similar to a hybrid Siamese network with three branches to
jointly learn both the future label and the starting time. The
first branch takes visual features from the objects present
in the scene using a fully connected network, the second
branch takes previous activity features using a LSTM net-
work to model long-term sequential relationships and the
third branch captures the last observed activity features to
model the context of inter-activity time using another fully
connected network. These concatenated features are used
for both label and time prediction. Experiments on two
challenging datasets demonstrate that our framework for
joint prediction of activity label and starting time improves
the performance of both, and outperforms the state-of-the-
arts.

1. Introduction
Human activity analysis is a widely studied computer

vision problem. The solution to this problem has cru-
cial impact on a wide range of practical applications such
as video surveillance, human-computer interaction, au-
tonomous navigation, active sensing, video indexing, ac-
tive gaming, assisted living, etc. In spite of the enormous
amount of research conducted in this area, the problem is
still challenging due to the fundamental challenges inher-

Figure 1. An example sequence of a video stream from MPII-
Cooking Dataset [32]. Two related problems are explained here
- early recognition of the ith activity from partial observations of
it, and prediction of its label from previously observed activities
only. In the early recognition problem (top-right), the first few
frames of the ith activity (cut slices) have been observed. In the
prediction problem (bottom-right), no frame of the ith activity has
been observed.

ent to the task, such as - the tremendous intra-class variance
among the activities, huge spatio-temporal scale variation,
target motion variations, etc. Moreover, low image resolu-
tion, object occlusion, illumination change and viewpoint
change further aggravate these challenges.

The majority of the existing works focus on the recog-
nition of observed activities or early recognition of par-
tially observed activities. In other words, they try to an-
swer queries like what happened before or what is happen-
ing right now, whereas predicting the labels of future ac-
tivities which have not yet been observed is a scarcely ex-
plored problem. In [2, 23, 24, 33, 42], by using the word
‘prediction’, these papers basically refer to the early recog-
nition task, i.e., predicting the label of the ongoing activity
where the first few frames of that activity have already been
observed. However, in the prediction problem we are ad-
dressing, no observation is available beforehand. The dif-
ference between these two problems is illustrated in Fig-
ure 1. Predicting the future activity labels is critical in real
life scenarios, where anticipatory response is required such



Figure 2. Overview of our approach. For joint prediction, both activity features (motion-based) from previous activities and object featues
present in the scene are used for training. Please refer to Section 3.2 for details.

as active sensing and autonomous navigation. For example,
it can help autonomous vehicles to decide how to maneuver
depending on the next predicted activity and its time of oc-
currence, or assist robots to make future decisions. There
are only a few approaches [3, 19] which perform label pre-
diction on real-life activity datasets like VIRAT [29]. To
the best of our knowledge, only one work [26] in the video
analysis community addresses the problem of predicting the
starting time of future unobserved activities.

1.1. Overview of the Proposed Approach

In this paper, for a video observed up to a particular time,
we present an integrated approach that can answer two im-
portant questions regarding its unobserved portion: what
will happen next and when will it happen, i.e., we predict
the labels and the starting times of future unobserved ac-
tivities in both coarse (VIRAT Ground Dataset [29] ) and
fine grained activity datasets (MPII-Cooking Dataset [32]).
We pose this as a joint (label and starting time) prediction
task because the problems of predicting the label and the
starting time of unobserved activities are closely related and
handling them together is intuitive. For example, in MPII-
Cooking Dataset, ‘cut slices’ can be followed by two prob-
able activities: ‘spice’ or ‘take out from drawer’. Usually,
‘spice’ takes place immediately after ‘cut slices’; but if there
is a delay, then ‘take out from drawer’ happens before.

Detailed overview of our proposed framework is illus-
trated in Figure 2. We developed a deep network by merg-
ing three branches: one with two fully connected layers,
another with two LSTM layers and the last one with an-
other two fully connected layers. Finally, we add another
fully connected layer to the output of this merged network.
The two fully connected layers in the first branch are trained
on the features of the objects present in the last observed
portion of the scene, the LSTM layers are trained on the
visual activity features of the previously observed sequen-
tial activities to exploit the context of long term sequential
dependency and the two fully connected layers in the third
branch are trained on the visual activity features of the last
observed activity to model the context of inter-activity time
based on the last observed activity label. So, the entire net-
work is trained on both the previous activity features and

the features of the objects present in the scene. In the output
layer, we use the first few (equal to the number of activity
classes) nodes as the logistic regression nodes for label pre-
diction and the last node as a regression node for starting
time prediction exploiting the concatenated features. The
logistic regression nodes assign different probabilities to the
future activity labels from which the label with the highest
probability is chosen and the regression node provides the
inter-activity time between the future activity and the last
observed activity from which the starting time of the fu-
ture activity is obtained. The motivation behind incorporat-
ing different context attributes is explained in Section 3.1
with ablation study provided in Sections 4.3 and 4.4. Our
main contribution is that we propose a novel architecture
that jointly models sequential relationships of the activities,
scene context and inter-activity time context in order to pre-
dict the future activity labels as well as their starting times.

2. Related Works

Our work involves the following areas of interest: activ-
ity recognition, future activity label prediction, future ac-
tivity starting time prediction, and Long Short-Term Mem-
ory (LSTM) network. We will review some relevant papers
from these areas.

Activity Recognition. Activity recognition approaches
based on hand-crafted visual features can be divided into
three categories: low-level local feature based methods
leveraged on interest point [22], mid-level feature based
methods leveraged on tracking and pose analysis [27], and
high-level semantic attribute based methods [34]. We would
like to refer to article [17] and [31] for a comprehensive
review of the state-of-the-art approaches. Most of the tra-
ditional approaches rely on hand-engineered local features
(e.g., STIP, SIFT-3D, HOG-3D, iDT). However, supervised
and unsupervised learning of meaningful hierarchical fea-
tures from deep neural networks (i.e., autoencoder, sparse
coding, and convolutional neural networks) have shown
huge success over hand-engineered features recently. C3D
feature learned with 3D Convolutional Networks is now the
state-of-the-art spatio-temporal feature for video and has
been shown to achieve best recognition accuracy in activity



recognition tasks [38]. Moreover, methods which consider
visual context, i.e., the relationships between different ac-
tivities and objects in the scene, have been successful for
recognition. In [45], object and human pose were used as
context. In [4] and [21], group context was used for collec-
tive activity recognition. In [7, 16, 43], contextual informa-
tion has been incorporated with deep networks to improve
recognition accuracy. Context has also been shown to be
useful for efficiently learning the models [13].

Future Activity Label Prediction. There have been a
few works which predict the label of the future unobserved
activity such as approaches using semantic scene label-
ing [19], Probabilistic Suffix Tree (PST) [23], augmented-
Hidden Conditional Random Field (a-HCRF) [44], Markov
Random Field (MRF) [3], kernel-based reinforcement
learning [15], max-margin learning [20], and deep network
[40]. Among these, only [3, 19] perform prediction, without
any observation of the activity to be predicted, in the label
space. In [40], where visual representation of images are
predicted and then recognition algorithm is applied, actions
can be anticipated only upto one second in the future.

Future Activity Starting Time Prediction. Predicting
the starting times of future unobserved activities is a new
research problem in the video understanding community.
Although, there are some relevant works [25, 46] in other
fields, to the best of the our knowledge, there is only one
relevant work [26] in the domain of video analysis which
is one of our previous works where we modeled the inter-
activity times using a Log-Gaussian Cox Process (LGCP).
Our new approach outperforms this baseline model.

Long Short-Term Memory (LSTM) Network. Un-
like traditional neural networks, Recurrent Neural Network
(RNN) has the capability of allowing information to be
passed from one step of the network to the next using
the loops inherent to their structure. However, in prac-
tice, RNNs cannot handle long-term dependencies, primar-
ily because of the vanishing and exploding gradient prob-
lem. To overcome the challenge of handling long-term
dependency, a special type of RNN called LSTM (Long
Short-Term Memory) was introduced in [14]. LSTMs have
achieved impressive performance in different sequence
learning problems [8, 11, 30, 36, 39]. Its ability to capture
long-range dependencies makes it a perfect tool for long-
term context incorporation.

3. Methodology

3.1. Role of Different Context Attributes

In real life scenarios, it is observed that activities follow
fixed temporal sequences. Therefore, previous activities can
provide useful information about the upcoming ones which
can be referred to as sequential activity context. Activities
are also characterized by the objects present in the scene

during the time of their occurrence which can be referred to
as scene context. For many activities, predicting the future
has multiple plausible options. To deal with this specific
ambiguity, we take scene context into account along with
the sequential information. Thus combining the information
obtained from these two different context attributes (tem-
poral sequence and spatial objects), we infer about future
unobserved activities. For example, if three sequential ac-
tivities in a video are ‘wash objects’, ‘peel’ and ‘cut slices’,
then there may be two probable choices for the next activ-
ity label: ‘spice’ or ‘put in bowl’ (based on two different
training instances). But a bowl present in the scene would
increase the possibility of the latter choice. Several research
works on activity recognition [4, 7, 16, 21, 43, 45, 47]
and prediction [3] have shown significant performance im-
provement by using such context information which are also
known as context-aware approaches. Most of the existing
works have graphical model based approaches for context
incorporation. However, they are not very suitable to han-
dle the context of long-term dependency. As mentioned be-
fore, LSTM is a popular choice for sequential context in-
corporation. LSTM networks are straightforward to fine-
tune end-to-end and can handle sequential data of varying
lengths. So, we use LSTM to incorporate sequential activity
context. However, for including the scene context, there is
no need for handling such sequential dependency and fully
connected layers can capture this efficiently.

The inter-activity time between different activities de-
pends on their labels. For example, it is obvious from our
experience that ‘peel’ or ‘cut slices’ takes more time than
‘wash objects’. Thus, by observing the previous activity
features we can infer about the difference between the start-
ing time of the observed activity and the future unobserved
activity referred to as inter-activity time context.

3.2. Network Architecture

Our proposed architecture and the basic idea of the prob-
lem are shown in Figure 3. For our case, the LSTM is
used to solve a sequential input, static output problem. We
use the activity features extracted from three (chosen em-
pirically) previously observed activities as the LSTM input.
Increasing the sequence length does not improve the pre-
diction accuracy significantly (see Parameter Sensitivity in
Section 4.3 for details). We use a two-layer (chosen empiri-
cally) LSTM in the second branch with 256 memory units in
each layer. The input of the two (chosen empirically) fully
connected layers in the first branch are the visual features
extracted from the objects present in the scene with 256
nodes in each layer. The input of the two (chosen empir-
ically) fully connected layers in the third branch are the ac-
tivity features extracted from the last observed activity with
256 nodes in each layer as well. Finally, the outputs from
these three branches are tied together and another fully con-



Figure 3. Proposed architecture for future activity label prediction. The top two fully connected layers (yellow) incorporate the scene
context which use object features as input. The two LSTM layers (green) are used to incorporate the sequential activity context which use
motion-based features as inputs. The bottom two fully connected layers (purple) are used to incorporate inter-activity time context which
use the last observed activity features (motion-based) as input. There is a fully connected layer (blue) where all these layers are merged
together. The output layer (gray) performs the final prediction, where the first few nodes (green) are used as the logistic regression nodes
for label prediction and the last node (blue) is used as the regression node for starting time prediction. In the problem description figure
(bottom), activities have starting times (t1s, t2s, ..., tks) and ending times (t1e, t2e, ..., tke). We want to predict the starting time t(k+1)s,
of the (k + 1)th activity by predicting the inter-activity time Tk.

nected layer is added on top of it. The merging combines
the effect of different context attributes. In the output layer,
the first few (equal to the number of activity classes) nodes
are used as the logistic regression nodes for label prediction
and the last node is used as a regression node for starting
time prediction.

3.3. Model Training Approach

We use the popular open source deep learning package
Keras [5] with TensorFlow [1] in the backend which has
ready-to-use implementations of LSTM and fully connected
layers. The network is trained on a NVIDIA Tesla K40
GPU. The input sequences for the LSTM are chosen in a
sliding window manner with a stride of one for data aug-
mentation. For example, to predict the ith activity label,
activity features extracted from the (i − 1)th, (i − 2)th

and (i − 3)th activities are used and for predicting the
(i + 1)th activity label, activity features extracted from the
ith, (i−1)th and (i−2)th activities are used and so on. We
use ReLU activation function for all the fully connected lay-
ers. In output layer, we use softmax activation function in
the logistic regression nodes for label prediction and ReLU
activation function in the regression node for starting time
prediction. The parameters of the entire network (both of
the LSTM and the fully connected layers) are jointly opti-
mized.

We take the summation of the following two losses to
compute the final loss. One is the cross-entropy loss func-
tion which is defined as follows:

L(X,Y) = − 1
n

∑n
i=1

∑c
j=1 1(y

(i) = j)

× log p(y(i) = j|x(i)) (1)

Here, X = {x(1), ...,x(n)} is the set of input feature vec-
tors in the training dataset, Y = {y(1), ..., y(n)} is the
corresponding set of labels for those input features, and
j = {1, ..., c} is the set of class labels. 1(.) is an iden-
tity function. For a particular training instance, x(i) repre-
sents the sequential activity features extracted from the pre-
vious three activities and the object features from the last
observed portion of the scene.

Another is the mean squared loss function which is de-
fined as follows:

L(P,Q) =
1

n

n∑
i=1

(q(i) − q̂(i))2 (2)

Here, P = {p(1), ...,p(n)} is the set of input feature vec-
tors in the training dataset, and Q = {q(1), ..., q(n)} is the
corresponding set of inter-activity times for those input fea-
tures. q̂(i) represents the predicted inter-activity time given
input p(i) where the ground truth inter-activity time is q(i).
For a particular training instance, p(i) represents the activity
features extracted from the last observed activity.



To optimize the network, we use a stochastic gradient
descent with an adaptive sub-gradient method (Adam) [18]
which is popular for its strong theoretical convergence guar-
antee and impressive history of empirical success. We
also tested with Adagrad [10], Adamax [18], Nadam [9]
and RMSProp [37] but empirically chose Adam. We use
Dropout layer [35] with a probability of 0.2 after each layer
to prevent overfitting. We use a batch size of 128 and a
learning rate of 0.001. Our network converges roughly at
60 epochs.

4. Experiments

We conduct experiments on two challenging datasets:
MPII-Cooking Dataset [32] (fine grained indoor activities)
and VIRAT Ground Dataset [29] (coarse outdoor activities)
to evaluate the performance of our proposed framework.

4.1. Datasets

MPII-Cooking Dataset. MPII-Cooking Dataset is a
fine grained complex activity dataset where the participants
interact with different tools, ingredients and containers to
complete a recipe. It has 65 different cooking activities
recorded from 12 participants. In total there are 44 videos
with a length of more than 8 hours. The dataset contains a
total of 5, 609 annotations [32].

VIRAT Ground Dataset. VIRAT Ground Dataset is
a challenging human activity dataset which consists of 11
different activities recorded in natural outdoor scenes with
background clutter. There are total 329 videos with a length
of around 5 hours [29]. However, we use only 275 of them
as some videos have incomplete annotations.

Detailed description of these datasets is available in the
supplementary material. These datasets are untrimmed and
have context information unlike the trimmed datasets popu-
larly used for recognition tasks in activity analysis.

4.2. Features

For MPII-Cooking Dataset, we use the bag-of-word
based Motion Boundary Histograms (MBH) [6] as activ-
ity features. According to [41], these features are extracted
around densely sampled points and a codebook is gener-
ated using k-means clustering for these 4000 words long
features. Scene context features (dimension of 212: 41 for
tools, 117 for ingredients and 54 for containers) naturally
exist in the dataset. For VIRAT Ground Dataset, we use
C3D features [38] as activity features. Scene context fea-
tures naturally exist in VIRAT Ground Dataset too. We use
MBH features for MPII-Cooking Dataset as these features
come with the dataset. For VIRAT Ground Dataset, we ex-
tract the C3D features as it does not come with any features.
We report results for MPII-Cooking Dataset using C3D fea-
tures as well.

4.3. Label Prediction Results

Objective. The main objective of these experiments is
to analyze how well our framework can predict the labels of
future unobserved activities.

Performance Measures. The evaluation metrics we use
are: 1. multi-class precision (Pr), 2. multi-class recall (Rc),
and 3. overall accuracy for top-1 match, top-2 matches and
top-3 matches. For all these metrics, the higher value indi-
cates better prediction performance.

Compared Methods. We compare our approach to
different state-of-the-art methods. There is no existing
method for predicting future activity labels for MPII-
Cooking Dataset. Therefore, we compare with a recent
recognition approach which estimates the labels of the ob-
served activities using a combination of CNN and LSTM
[28]. For VIRAT Ground Dataset, there is an existing
graphical model based approach [3] and a semantic scene
labeling based approach [19]. We compare our method with
[3] but cannot compare with [19] because they use scene
specific customized set of labels which are not annotated in
the original dataset. We also compare with a state-of-the-
art active learning based recognition approach which uses
sparse autoencoder [12] and achieve higher accuracy.

Experimental Setup. For experiments on MPII-
Cooking Dataset, we use five fold leave-one-person-out
cross validation approach for the training-testing split and
average our results over these five combinations. Among 12
subjects, we use 7 for training and 5 for testing. For each of
the five training instances, we use 7 training subjects and 4
testing subjects for training, leaving 1 from that set for test-
ing. This is done 5 times leaving 1 testing subject out and
then the results are averaged. For experiments on VIRAT
Ground Dataset, we use the first 170 videos for training and
the rest of them for testing.

Results for MPII-Cooking Dataset. Comparison of
our label prediction results on MPII-Cooking Dataset with
state-of-the-art method is shown in Table 1. The method we
compare to did not report all of the evaluation metrics we
use- hence the missing values. It is seen that our method
outperforms the recognition method proposed in [28]. This
is not surprising because in recognition problems the net-
work has to decide among all the activity classes whereas
in the sequence learning based prediction task, the network
needs to consider only a subset of classes which occurred in
the training phase after that particular sequence. Using C3D
features, we achieve Top-1 accuracy of 79.9%. The coher-
ence in Top-1 accuracies using both MBH and C3D features
indicates that our method is independent of any particular
choice of feature.

Results for VIRAT Ground Dataset. Comparison of
our label prediction results on VIRAT Ground Dataset with
state-of-the-art methods is shown in Table 1. It is seen that
our method outperforms the prediction method proposed



Figure 4. Four example activity sequences showing our label prediction results and time prediction results on MPII-Cooking Dataset (top
row) and VIRAT Ground Dataset (bottom row). For time prediction, green × marks the ground truth starting time of the activity we are
trying to predict, and red × marks the predicted time. For label prediction, top-3 matches are shown here and in most of the cases our top-1
match corresponds to the activity that actually happened (green tick).

MPII-Cooking Dataset [32] Goal Precision Recall
Accuracy %

(Top-1)
Accuracy %

(Top-2)
Accuracy %

(Top-3)
CNN + LSTM [28] Recognition 34.8 51.7 - - -
Proposed Method Prediction 70.7 66.5 80.1 90.0 93.7

VIRAT Ground Dataset [29] Goal Precision Recall
Accuracy %

(Top-1)
Accuracy %

(Top-2 )
Accuracy %

(Top-3 )
Sparse Autoencoder [12] Recognition - - 54.2 - -

Graphical Model [3] Prediction - - 68.5 - -
Proposed Method Prediction 49.6 22.2 71.8 79.8 86.4

Table 1. Label prediction performance comparisons for MPII-Cooking Dataset and VIRAT Ground Dataset.

in [3]. We also achieve higher accuracy than the recogni-
tion method proposed by [12]. The intuition behind predic-
tion accuracy being higher than recognition accuracy is ex-
plained above. However, for datasets like VIRAT Ground
Dataset, where the number of classes is small, prediction
accuracy is closer to recognition accuracy. Figure 4 depicts
some example sequences showing both of our label predic-
tion results and time prediction results on the two datasets.

Multiple Possibilities for Future Activity Label. One
particular activity sequence can have multiple possible out-
comes. For example, ‘wash objects’ and ‘peel’ can be fol-
lowed by either ‘cut apart’ and ‘cut slices’. As the network
has been trained on both of these possible sequences (in
one case the network has probably seen ‘cut apart’ as the
next activity and in another case ‘cut slices’ as the next ac-
tivity), it is hard to say precisely which is the next activ-
ity. Earlier we mentioned that in case of multiple possi-
bilities, such as while choosing between ‘spice’ or ‘put in
bowl’ after ‘wash objects’, ‘peel’ and ‘cut slices’, a bowl

in the scene increases the probability of the activity label
being the latter one. But in these types of closely related
activities (‘cut apart’ and ‘cut slices’), scene context can-
not contribute much as both of the activities require a knife.
This is why we present the top-3 choices with the associated
probabilities for each of them. We did not go beyond top-3
because after that the probabilities become much lower as
we found empirically. This is shown in the first example
of Figure 4 where our network assigns almost equal proba-
bility to all of the possible future activities (‘cut dice’, ‘cut
slices’, ‘cut apart’) but the activity which actually happened
(‘cut slices’) is the one with the second highest probability.
In spite of having these closely related ambiguous activi-
ties in the dataset, our top-1 match outperforms the base-
line in terms of accuracy. Our method can also handle the
case of predicting an unknown label (never seen in training)
when the probability of none of the predicted future activi-
ties crosses a threshold.



Parameter Sensitivity. We empirically choose a se-
quence length of 3 for preceding activity features as se-
quence length of 2, 5, 7 and 9 give relatively lower accuracy
for MPII-Cooking Dataset as shown in Table 2.

Top-1 Accuracy %
Sequence
Length

2

Sequence
Length

3

Sequence
Length

5

Sequence
Length

7

Sequence
Length

9
78.8 80.1 79.2 77.8 77.2

Table 2. Parameter sensitivity analysis for MPII-Cooking Dataset.

Ablation Study. Using only sequential activity con-
text and scene context (eliminating inter-activity time con-
text), we get relatively lower label prediction accuracy for
MPII-Cooking Dataset than that of our proposed network.
Similarly, using only sequential activity context and inter-
activity time context (eliminating scene context), we get
lower label prediction accuracy than that of our proposed
network for MPII-Cooking Dataset. These ablation study
results shown in Table 3 justifies the integration of label and
time prediction.

Top-1 Accuracy %

Dataset Proposed
Network

Removing
Inter-activity
Time Context

Removing
Scene Context

MPII-Cooking [32] 80.1 75.1 33.1
VIRAT Ground [29] 71.8 69.2 61.0

Table 3. Ablation study for label prediction for both of the datasets.

4.4. Starting Time Prediction Results

Objective. The main objective of these experiments is
to analyze how well our framework can predict the starting
times of future unobserved activities.

Performance Measures. We use Root-Mean-Square Er-
ror (RMSE) as our evaluation metric. The lower the value,
the better is the prediction performance.

Compared Method. We compare our approach to
state-of-the-art starting time prediction method (a statisti-
cal model) [26]. In [26], there is an underlying assumption
of exponential distribution for the inter-activity time. Our
new approach is free from this assumption.

Experimental Setup. For experiments on MPII-
Cooking Dataset, we use five fold leave-one-person-out
cross validation approach for the training-testing split and
average our results over these five combinations. For ex-
periments on VIRAT Ground Dataset, we use the first 210
videos for training and the rest of them for testing.

Results for MPII-Cooking Dataset. Comparison of our
starting time prediction results on MPII-Cooking Dataset
with state-of-the-art method is shown in Table 4. It is seen
that our method outperforms [26]. We also analyze our time
prediction result as a function of the last observed activity

Figure 5. RMSE values based on the label of the observed activity
(top) and the label of the predicted activity (bottom) for MPII-
Cooking Dataset.

label and as a function of the label of the activity being pre-
dicted. Figure 5 shows the RMSE values based on the la-
bel of the last observed activity (top) and the label of the
predicted activity (bottom) for MPII-Cooking Dataset. It is
seen that only one of the observed activity labels (28) (top)
and some of the predicted activity labels (bottom) are con-
tributing to a higher amount of error. We found that if the
last observed activity is a relatively longer one by nature,
such as ‘make puree’ (label 28 in Figure 5 (top)), then the
predicted starting time of the next unobserved activity is rel-
atively more erroneous.

Results for VIRAT Ground Dataset. Our starting time
prediction result on VIRAT Ground dataset is shown in Ta-
ble 4. The state-of-the-art starting time prediction method
[26] does not have results on this dataset. For VIRAT
Ground Dataset, there are randomly occurring artificial gaps
between many activities. There is no way to train a system
to predict the starting time of the next activity with such
gaps, since there is no underlying structure in them. (Note
that label prediction still works because there is structure
in what an actor does next, just not when). Thus, we iden-
tify activity sequences where there is a regular pattern of
activities happening one after another and show results only
on them. For example, labels like ‘person loading an ob-
ject’, ‘person unloading an object’, ‘person opening a vehi-
cle trunk’, ‘person closing a vehicle trunk’ belong to natural
sequences where we can predict when the next activity will
happen. As explained above, while suitable for the label
prediction problem given the continuous nature of the data,
this dataset is not ideal for activity starting time prediction
analysis, which, we believe, is making the error higher here.

Ablation Study. Using only inter-activity time context
(eliminating sequential activity context and scene context),
we get a higher RMSE for starting time prediction than that
of our proposed network for MPII-Cooking Dataset. This
ablation study result shown in Table 5 justifies the integra-



MPII-Cooking Dataset [32] Goal Average Inter-activity Time (sec) Average RMSE (sec)
Statistical Model [26] Prediction 5.3426 3.9431

Proposed Method Prediction 5.3426 1.2454
VIRAT Ground Dataset [29] Goal Average Inter-activity Time (sec) Average RMSE (sec)

Proposed Method Prediction 13.9567 10.4560

Table 4. Starting prediction performance comparisons for MPII-Cooking Dataset and VIRAT Ground Dataset.

tion of label and time prediction.

Average RMSE (sec)

Proposed Network Removing Activity Context
& Scene Context

1.2454 1.4872

Table 5. Ablation study for starting time prediction for MPII-
Cooking Dataset.

4.5. Effect on Prediction Horizon

For label prediction, we perform multi-step prediction
where we predict the next-to-next activity i.e., 2-step pre-
diction (using activity features from the (i− 3)th, (i− 2)th

and (i− 1)th activities, we predict the label of the (i+1)th

activity) and the next-to-next-to-next activity (3-step predic-
tion). As expected, the accuracy decreases as the prediction
horizon increases. For starting time prediction, we also per-
form multi-step prediction. For example, for 2-step predic-
tion, we train our model using the features of the (i − 1)th

activity, and its inter-activity time with the (i + 1)th activ-
ity. During the operational phase, we use the observed fea-
tures to predict the starting times of the next-to-next activi-
ties. As the prediction horizon increases, there is a gradual
accumulation of error. The decrease in accuracy for multi-
step label prediction for both of the datasets and the increase
in RMSE for multi-step starting time prediction for MPII-
Cooking Dataset are shown in Figure 6.

We did not perform multi-step starting time prediction
on VIRAT Ground Dataset because of the random gaps be-
tween activities as explained earlier. We did not go beyond
3-step for joint prediction as the RMSE error for starting
time prediction is already quite high for 3-step prediction
shown in Figure 6. However, when we do label prediction
separately as an ablation study for prediction horizon, i.e.,
using a network with only sequential activity context and
scene context, the label prediction results upto 5-step pre-
diction for both of the datasets are shown in Figure 7 av-
eraged across all of the activity labels. The above analysis
demonstrates that joint estimation of activity label and start-
ing time leads to higher accuracy, but comes at the cost of a
shorter forecasting horizon.

5. Conclusion
In this work, we propose a framework for jointly predict-

ing the label and the starting time of future unobserved ac-
tivity by taking advantage of the combination of LSTM and

Figure 6. Accuracy of the predicted labels (top) and RMSE of
the predicted starting times (bottom) for multi-step prediction.
For both of the datasets, the label prediction accuracy decreases
and for MPII-Cooking Dataset, the RMSE for predicted times in-
creases with the increasing forecasting horizon as expected.

Figure 7. Accuracy of the predicted labels for multi-step prediction
without inter-activity time context. For both of the datasets, the
label prediction accuracy decreases as we try to predict further
ahead as expected.

fully connected layers to exploit the contextual relationship
among activities and objects. Rigorous experimental anal-
ysis on two challenging datasets proves the robustness of
our framework. Our approach is capable of both multi-step
label prediction and multi-step time prediction with rea-
sonable error. In future, we plan to extend our prediction
method for multi-camera environment and investigate how
to predict new unseen activity classes.
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