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ABSTRACT

In this paper, we propose a method to incrementally super-
resolve 3D facial texture by integrating information frame by
frame from a video captured under changing poses and illumi-
nations. First, we recover illumination, 3D motion and shape
parameters from our tracking algorithm. This information is
then used to super-resolve 3D texture using Iterative Back-
Projection (IBP) method. Finally, the super-resolved texture
is fed back to the tracking part to improve the estimation of il-
lumination and motion parameters. This closed-loop process
continues to refine the texture as new frames come in. We also
propose a local-region based scheme to handle non-rigidity
of the human face. Experiments demonstrate that our frame-
work not only incrementally super-resolves facial images, but
recovers the detailed expression changes in high quality.

Index Terms— Super-resolution, 3D, Facial image

1. INTRODUCTION

Face recognition and identification for surveillance systems,
information security, and access control has received growing
attention. In many of the above scenarios, the distance be-
tween the objects and the cameras is quite large, which makes
the quality of video usually low and facial images small. Zhao
et al. [1] identify low-resolution (LR) as one of the chal-
lenges in video-based face recognition. Super-resolution (SR)
from multiple images in video has been studied by many re-
searchers in the past decades. There still exist problems such
as facial expression variations, different poses and lighting
changes that need further investigation. In our approach, we
propose a closed-loop framework that super-resolves facial
texture through the combined effects of motion, illumination,
3D structure and albedo.

Our method super-resolves facial texture utilizing both
spatial and temporal information from video through chang-
ing poses and illuminations. We track the image sequence
and estimate illumination parameters through 3D tracking,
interpolation by changing pose and illumination normalized
images. We also use local-region based super-resolution to
handle the non-rigidity of human face.

2. RELATED WORK, MOTIVATION AND
CONTRIBUTIONS

2.1. Related work

Based on spatial or frequency domains, we categorize SR ap-
proaches into two classes: spatial domain and frequency do-
main. SR approaches can also be divided into reconstruction-
based and learning-based methods based on whether training
step is employed. Schultz and Stevenson [2] use a Huber-
Markov-Gibbs model for the a priori model to preserve edges
while achieving a global smoothness constraint. Another ap-
proach toward the SR reconstruction problem is the method of
projections onto convex sets (POCS) [3]. Irani and Peleg [4]
propose an iterative back-projection (IBP) method updating
the estimate of the SR reconstruction by back-projecting the
error between the simulated LR images and the observed LR
ones. Yu and Bhanu [5] adopt this method for super-resolving
2D facial images non-uniformly based on the local regions.
There exist hybrid methods which combine ML/MAP/POCS
based approaches to SR reconstruction [2]. In the SR liter-
ature, there are only a few approaches that focus on super-
resolution of facial images. Baker and Kanade [6] propose
learning-based SR algorithm named hallucination or recogstruc-
tion on human facial images. Following this work, Dedeoglu
et al. [7] adopt graphical model to encode spatial-temporal
consistency of the LR images. The above methods are all
learning-based SR approaches and need a certain amount of
training faces. They assume alignment is done before apply-
ing SR methods. However, accurate alignment is the most
critical step for SR techniques.

2.2. Motivation and Contribution

We propose a framework to incrementally super-resolve fa-
cial video under changing illumination and pose. Unlike tra-
ditional approaches which extract SR frames from multiple
images using a “sliding window” with respect to a reference
frame, we integrate spatial and temporal information of LR
frames to refine 3D facial texture for the entire video.

LR video is usually taken under uncontrolled condition at
a distance. Hence there may be large illumination and pose
variation in the acquired video. Traditional motion estimation
techniques in the existing SR literature that use dense flow or
parametric transformation without compensating for illumi-
nation changes will not work at the registration stage. And
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Fig. 1. Block diagram of our approach.

it is difficult to handle large pose changes in video for these
techniques. We estimate 3D motion and illumination param-
eters for the video to register the images with a generic 3D
model and normalize for the illumination. We also design a
scheme to take special care of the non-rigidity of human face
with expression changes.

3. TECHNICAL APPROACH

The block diagram of our approach is shown in Figure 1.
A generic 3D face model [8] is used in our approach. This
generic model is acceptable for super-resolving the 3D tex-
ture. The problem of obtaining a more accurate 3D structural
model is not the focus of this paper. We first track the pose
and estimate illumination of the incoming frame from a video.
Then the tracked pose and estimated illumination are passed
to the super-resolution algorithm for super-resolving the 3D
facial texture. Following this step the super-resolved 3D fa-
cial texture is fed back to generate low-resolution bilinear ba-
sis images, which are used for pose tracking and illumination
estimation. The feedback process improves the estimates of
pose and illumination in subsequent frames. This process is
continuously repeated to refine the 3D facial texture as new
frames come in. Note that our tracking and super-resolution
algorithms are 3D based approaches.

3.1. Bilinear Basis Images Computation

It has been proved that for a fixed Lambertian object, the set of
reflectance images under distant lighting without cast shadow
can be approximated by a linear combination of the first nine
spherical harmonics [9]. In recent work [10], motion was
taken into the consideration in the above formulation. It was
shown that for moving objects it is possible to approximate
the sequence of images by a bilinear subspace using tensor
notation as

I =
(
B + C ×2

(
T
Ω

))
×1 l, (1)

where ×n is the mode-n product . I ∈ R1×1×M×N is a
sub-tensor representing the image, B ∈ RNl×1×M×N is a
sub-tensor comprising the illumination basis images. C ∈
RNl×6×M×N incorporates the bilinear basis for the motion

and illumination, and l ∈ R9 is the vector of illumination
coefficients.

Thus, low-resolution bilinear basis images are obtained
from the super-resolved texture and passed on to the pose and
illumination component described below.

3.2. Pose and Illumination Estimation

The joint illumination and motion space described above pro-
vides us with a method for estimating 3D motion of moving
objects in video sequences under time-varying illumination
conditions as:

(
l̂, T̂, Ω̂

)
= arg min

l,T,Ω
‖It2 −

(
Bt1 + Ct1 ×2

(
T

Ω

))
×1 l‖2

+α||
(

T

Ω

)
||2 (2)

After this process, 3D motion T̂ and Ω̂ along with illu-
mination coefficients l are estimated. We use the estimated
motion and illumination to get the illumination normalized
frame with respect to the reference illumination and pass it
along with the 3D motion estimate to the super-resolution al-
gorithm.

3.3. Super-resolution Algorithm

We adopt IBP [4] algorithm and extend it to 3D as our SR
method. Due to the non-rigidity of the face, we reconstruct
SR texture separately based on six facial regions of the face.
The inputs to IBP are illumination normalized LR images and
the current super-resolved texture. The block diagram is illus-
trated in Figure 2.

In Figure 2, Xn is the currently reconstructed 3D facial
texture at the n-th frame. We define Yk

n as the k-th illumi-
nation normalized LR facial region. T̂ and Ω̂ represent the
tracked pose passed from the tracking algorithm. Bn is the
process of projecting 3D texture to form 2D image while B−1

n

denotes the inverse process. h is the blurring function and
P denotes the back-projection kernel as proposed in [4]. ↑s
represents an up-sampling operator by a factor s.

Due to the non-rigidity of a human face, there may exist
facial expression changes such as closing eyes and opening
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Fig. 2. Block diagram of the super-resolution algorithm.

mouth. In order to handle facial expression changes in im-
ages, we use local-based SR approach by dividing facial im-
age into different regions (two eyes, two eye brows, mouth
and the rest of the face) based on facial features. We inter-
actively locate eyes, eye brows, and mouth in the 3D model
during registration of the first frame to 3D model. For each
incoming LR image, we calculate a match statistic to detect
whether there are significant expression changes. If the match
score is below a certain threshold, the corresponding part will
be ignored during super-resolving the texture. According to
[4], the revising values of model texture ∆Xn are calculated
by simulated pixel values from 3D texture and the observed
image pixels (illumination normalized) as given by the fol-
lowing equation:

∆Xn =

6⋃

k=1

(((Yk
n − Ỹk

n) ↑ s) ∗P)B
−1
n (3)

The simulated imageỸk
n′ is generated as:

Ỹk
n = ([Xk

n]Bn ∗ h) ↓ s (4)

We define our match measure as follows,

Ek =

M∑
x=1

N∑
y=1

(
(Yk

n(x, y)− µ1)([X
k
n(x, y)]Bn − µ2)

)

M∗N∗σ1∗σ2
(5)

where M and N are the image size, µ1 and µ2 are respec-
tive means of image regions, σ1 and σ2 are respective image
variances within the region.

4. EXPERIMENTAL RESULTS

We carry out our a variety of experiments to demonstrate the
performance of our closed-loop approach.

4.1. Synthetic Data

Given pose changes, we generate LR video sequence syntheti-
cally from scanned 3D model [8] with high-resolution texture.
The generated LR video sequence is blurred by a 7x7 Gaus-
sian blur function and down-sampled to about 30x30 pixels.

Not only does our approach integrate information from
commonly visible part on the images, it can also integrate in-
visible texture on the previous pose to super-resolve the 3D
texture. The last row in Figure 3 shows this tendency from
the first reconstructed image to the last one. On the first re-
constructed SR image, the left-most part is black and blurred

because this part is not visible from the previous input LR
images. After some iterations, it is getting better and better
as new frames at visible poses are available. Figure 5 clearly
shows this tendency through the measurement of peak signal-
to-noise ration (PSNR) between reconstructed SR image with
target SR ones. PSNR of common face parts denotes the
frontal facial region for the face. PSNR of non-common parts
represents the facial region which becomes completely visible
at the end from being invisible in the first frame. From this
figure, PSNR of the common parts keeps rising higher after
the first 41 frames and almost keep constant at a value close
to 31. Compared with the initial guess of the super-resolved
texture, the one after the first 41 frames integrate information
from these frames which causes PSNR value to go higher.
PSNR of common face parts goes higher again at about 100-
th frame because the occluded region of common face parts
becomes visible. PSNR of non-common parts shows the pro-
cess of super-resolving for the invisible part of the face in the
first frame.

4.2. Real video

We test our algorithm on a video of person whose face has
significant expression over time. Assuming the face is a rigid
object, we track this sequence over time during tracking. In
super-resolution step, we use a local-based approach to super-
resolve the texture. The results are shown in Figure 4. We
interactively locate the six regions in the 3D model during
registration of the first frame as described in section 3.3. We
then compute the match statistic between partitioned region of
illumination normalized input LR image and corresponding
super-resolved texture for the coming frames. If there are less
than 10 continuous frames which are determined by the match
statistic to have significant facial expression changes, we will
discard the corresponding parts of LR image for super-resolution.
Otherwise, we believe that they are valid expressions and we
super-resolve the associated texture. In this situation, we re-
fresh the previously constructed texture.

5. CONCLUSIONS

In this paper, we propose a video-based super-resolution ap-
proach where pose and illumination invariant tracking and
super-resolution take place in a closed-loop. Our experimen-
tal results show that our method can acquire super-resolution
video with this novel closed-loop system. Moreover, our method
can handle the non-rigidity of human face since the facial im-



Fig. 3. Results on Synthetic video with Ground
Truth Poses. The first row shows the original LR
frames and the second row shows the bicubic inter-
polated ones. Reconstructed SR images are shown
in the third row. The last row shows pose and illu-
mination normalized reconstructed SR images with
respect to the middle input LR image.

Fig. 4. Real video with expression changes. The
first row shows the original LR frames and the
second row shows the reconstructed ones with the
global method. The third row shows the SR images
of our local-based method.
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Fig. 5. Evaluation of super-resolved video as measured by the
peak signal-to-noise ratio for the results shown in Fig. 3.

ages are processed non-uniformly for different regions of the
face.
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