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Abstract—In this paper, we present a theory for combining the effects of motion, illumination, 3D structure, albedo, and camera

parameters in a sequence of images obtained by a perspective camera. We show that the set of all Lambertian reflectance functions of

a moving object, at any position, illuminated by arbitrarily distant light sources, lies “close” to a bilinear subspace consisting of nine

illumination variables and six motion variables. This result implies that, given an arbitrary video sequence, it is possible to recover the

3D structure, motion, and illumination conditions simultaneously using the bilinear subspace formulation. The derivation builds upon

existing work on linear subspace representations of reflectance by generalizing it to moving objects. Lighting can change slowly or

suddenly, locally or globally, and can originate from a combination of point and extended sources. We experimentally compare the

results of our theory with ground truth data and also provide results on real data by using video sequences of a 3D face and the entire

human body with various combinations of motion and illumination directions. We also show results of our theory in estimating

3D motion and illumination model parameters from a video sequence.

Index Terms—Motion, illumination, reflectance, bilinear, 3D structure.

Ç

1 INTRODUCTION

THE appearance of an image sequence depends upon the
following physical entities: the 3D model of the object

being imaged, its surface properties and texture, illumination
condition, object motion, and camera parameters. Under-
standing the interaction of these variables from a video
sequence is one of the key challenges in computer vision.
However, this is not an easy problem, in general, because of
the complex relationships between the various parameters.
As a result, two of the fundamental cues for image formation,
motion and illumination, have been studied more or less
independently. In this paper, we present a theory that
combines motion, illumination and 3D structure in a single
framework, using a perspective projection camera model. We
derive an analytical expression for the joint space of motion
and illumination variables. This result implies that, when the
3D model of an object at one instance of time is known, the
reflectance images at future time instances under varying
illumination and motion can be calculated using the subspace
(which is shown to be approximately bilinear) computed at
this instance. Conversely, given an arbitrary video sequence,
it is possible to recover the 3D structure, motion, and
illumination conditions simultaneously using the bilinear
subspace formulation. Our theory is valid under the
assumption of continuous motion (i.e., small motion in the
case of discrete frames) and is thus applicable to most video
sequences.

Following the work of [39], we distinguish the variabil-
ities in a image sequence as originating from three general
sources: photometric, geometric, and object characteristic.
Photometric variability is due to change of the illumination
conditions. Geometric variability is due to the change of
pose and relative spatial location of the object with respect
to the view point. Object characteristic variability is due to
the object itself, including nonrigid deformations and
texture change. In this paper, we concentrate on unifying
the geometric and photometric variabilities. Object vari-
abilities, like nonrigidity, will be handled in future work.

1.1 Related Work

Traditionally, motion and illumination (i.e., the geometric
and photometric issues) have been studied separately. One
of the classical methods for 2D motion estimation on the
image plane is optical flow [18]. It assumes that the intensity
of a particular point does not change over time. Estimation of
3D motion and structure, usually referred to as the Structure
from Motion (SfM) [5], [1], [44], [42], [6] problem, is another
classical research area in computer vision. While largely
constrained to the analysis of rigid objects, it has been
recently extended to nonrigid objects under orthographic
projection [45]. For reconstructing 3D structure from discrete
views obtained over a wide baseline, stereo reconstruction
algorithms (and multicamera generalizations) have been
proposed [8], [15]. However, most SfM and stereo recon-
structions algorithms do not take illumination variation into
consideration. To understand the inaccuracies that arise in
the solution of the 3D reconstruction problems, a number of
strategies for statistical analysis of the errors and robust
statistical algorithms have been developed [7], [51], [48], [9],
[35], [37], [36], [31], [28]. A method for shape reconstruction
of a moving object under arbitrary, unknown illumination,
assuming motion is known, was presented in [41]. Recently,
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Zhang et al. [49] have proposed modeling the change of
illumination in optical flow and combine it with structure
from motion, photometric stereo, and multiview stereo in an
optimization framework. In [21], the authors proposed a
multiview stereo algorithm that can estimate the three-
dimensional shape and reflectance parameters under fixed
illumination. However, none of the above methods provide
an explicit expression relating the image and the motion,
structure, and illumination variables for video sequences.

In the study of illumination, Shape from Shading (SfS) [10],
[17], [29] is one of the earliest and most widely known
methods. It is based on the Lambertian reflectance law and
relies on the illumination information in a single image to
estimate the 3D structure in a scene. Shashua [39] and Moses
[26] proposed that, ignoring the effect of shadows, the set of
images under varying illumination lies in a 3D linear
subspace and derived the representation of the space. Using
this fact and under the condition that the object and camera
are fixed, they showed that three images obtained under three
independent lighting conditions is sufficient to reconstruct
the image set without prior knowledge of illumination
conditions. This is known as Photometric Stereo and requires
the object and camera to be fixed. When an uniform ambient
illumination component is considered, the subspace of the
image becomes 4D. Belhumeur and Kriegman [3] showed
that the set of images of an object under arbitrary illumination
forms a convex cone in the space of all possible images.
Furthermore, they also proved that, when attached shadows
are considered, the subspace dimension grows to infinity.
However, most of the energy is packed in a limited number of
lower order harmonics, thereby leading to a low-dimensional
subspace approximation. In [2] and [33], the authors
independently derived that it is possible to use low order
spherical harmonics to accurately approximate the reflec-
tance images. Specifically, they analytically derived a
9D spherical harmonics based linear representation of the
images produced by a Lambertian object with attached
shadows. An overall framework for modeling reflected light
as a convolution of incident illumination with the bidirec-
tional reflectance distribution functions, along with applica-
tions, was presented in [34]. However, these methods focus
primarily on the problem of object recognition and are
restricted to the analysis of single images. Extending the work
in [2] directly to video sequences would require repeating the
processes for each image separately. However, this is
inefficient since the images of a moving object illuminated
from a given light source over a short time period would be
related based on the motion of the object. We exploit this fact
to derive the joint illumination and motion space of video
sequences [47].

Motivation for integrating the effects of motion and
lighting comes largely from the field of object recognition,
where pose and illumination invariant recognition is still an
open problem. In the FRVT 2004 evaluation report (http://
www.frvt.org/), illumination and pose variations are cited as
being two of the major problems facing face recognition
algorithms. In the mid-1990s, Murase and Nayar [27]
proposed a method for pose and illumination invariant object
recognition where an object is represented as a manifold in an
eigenspace parameterized by pose and illumination vari-
ables. The input image is projected to this eigenspace and the
object is recognized based on the manifold it lies on. However,
this method needs a large set of images to construct the object

eigenspace. Recently, there have been a number of algorithms
for illumination invariant face recognition, most of which are
based on the fact that the image of an object under varying
illumination lies in a lower dimensional linear subspace. Lee
et al. [23] try to arrange physical lighting so that the acquired
images of each object can be directly used as the basis vectors
of the low-dimensional linear space. They also proposed a
novel method to model and recognize human faces in video
sequences in [24]. In [50], the authors proposed a 3D Spherical
Harmonic Basis Morphable Model (SHBMM) to implement a
face recognition system given one single image under
arbitrary unknown lighting. In [16], a method was proposed
for using Locality Preserving Projections (LPP) to eliminate
the unwanted variations resulting from changes in lighting,
facial expression, and pose. Gross et al. [12], [13] proposed
using Eigen Light-Fields and Fisher Light-Fields to do the
pose invariant face recognition. They use generic training
data and gallery images to estimate the Eigen/Fisher Light-
Field of the subject’s head and then compare the probe image
and gallery light-fields to match the face. Zhou and Chellappa
[52] used photometric stereo methods for face recognition
under varying illumination and pose. In spite of the existance
of many methods, pose and illumination variations remain a
challenging problem in object recogntion and it is important
to understand the interplay of motion and illumination in the
process of image sequence formation. Also, most of these
methods usually deal with recognition across discrete poses
and do not consider continuous video sequences.

1.2 Overview of the Paper

In this paper, we develop a theory to characterize the
interaction of motion and illumination in generating image
sequences of a 3D object. We show that the set of all
Lambertian reflectance functions of a moving object with
attached shadows at any position, illuminated by arbitrarily
distant light sources, lies “close”1 to a bilinear subspace
consisting of (approximately) nine illumination variables
and six motion variables. Our work generalizes the results in
[2] to video sequences. We consider the case of continuous
motion and represent variations in surface norms and albedo
up to a first order approximation. The bilinear subspace
formulation can be used to simultaneously estimate the
motion, illumination, and structure from a video sequence.
Using this result, we synthesize video sequences of a 3D face
with various combinations of motion and illumination
directions. We further demonstrate the application of this
theory to estimate 3D motion and lighting from a video
sequence of a moving face under unknown varying
illumination.

The rest of the paper is organized as follows: Section 2
presents previous work on the Lambertian Reflectance Linear
Subspace (LRLS) method for modeling illumination in an
image. It also provides an intuitive motivation for our
theoretical derivation. Section 3 presents the theoretical
derivation of the bilinear space of motion and illumination
variables, with some of the mathematical details in the
Appendix. In Section 4, experimental analysis of the accuracy
of the theory and image synthesis results are presented.
Section 5 shows the application of this theory in 3D motion
estimation and its results. Section 6 concludes the paper and
highlights future work.
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1. The Lambertian reflectance function actually lies in a nonlinear space,
which is approximately bilinear, as we show later in the paper.



2 PREVIOUS WORK AND MOTIVATION

Before we derive our theoretical results, we first review some
basic definitions and previous work. Lambertian surfaces
reflect light in all directions. According to Lambert’s cosine
law, the brightness of a specific point on Lambertian surface is
proportional to the inner product of the surface normal and
the incidence direction, as well as the energy per unit area on
the surface, i.e.,

I ¼ A�cos�;

where I is the reflectance intensity, A is the incident ray
intensity, � is the albedo of the surface point, and � is the
angle between the surface norm and the direction of the
incident ray.

The authors in [2] have proved that, when the 3D model is
fixed, the set of the reflectance images can be decomposed by
an infinite series of spherical harmonics functions. However,
as the lower order spherical harmonics capture more energy,
it is possible to use only a few spherical harmonics to
approximate the image under varying illumination condi-
tions. In the paper, they proved that the image can be
approximated by a linear combination of the first nine
spherical harmonics, which accounts for 99.22 percent of
the energy. That is, the image lies close to a 9D linear
subspace. They also show that the reflectance intensity for an
image pixel ðx; yÞ can be approximately expressed as

Iðx; yÞ ¼
X
i¼0;1;2

X
j¼�i;�iþ1...i�1;i

lijbijðnÞ; ð1Þ

where I is the reflectance intensity of the pixel, i and j are
the indicators for the linear subspace dimension in the
spherical harmonics representation, lij is the illumination
coefficient determined by the illumination direction, and bij
are the basis images. The basis images can be represented in
terms of the spherical harmonics as

bijðnÞ ¼ �riYijðnÞ; i ¼ 0; 1; 2; j ¼ �i; . . . ; i; ð2Þ

where � is the albedo at the reflection point, ri is constant for
each spherical harmonics order,Yij is the spherical harmonics
function, and n is the unit norm vector at the reflection point
(please refer to [2] for more detail). Thus, (1) relates the
3D structure of the object (in terms of surface normals), the
illumination direction, and albedo to the generated image.
For brevity, we will refer to the work in [2] as the Lambertian
Reflectance Linear Subspace (LRLS) theory.

The LRLS theory, as described in [2], is suitable for the
situation that the 3D model and position are fixed and only
illumination changes. This is because the basis images do
not change as long as the 3D model and its position are
fixed. This works for still images, but, when we consider the
situation that the rigid object is moving, the basis images,
bij, change from frame to frame. That is to say, for different
time instances, the frames are not in the same linear
subspace. If we want to use the method in [2] directly to
video sequences, the basis images would have to be
calculated for each frame. This is not only time-consuming,
but also inefficient because it does not take into account the
fact that the images of the moving object would be related
over a short period of time. In this paper, we show how to
take into account the motion of an object so as to combine
the effects of motion, illumination, and 3D structure in
generating a sequence of images.

3 THEORETICAL DERIVATION

In order to deal with both illumination and motion, we
divide the problem into two stages. In the first stage, the
object’s motion is considered and the change in its position
from one time instance to the other is calculated. We refer to
this change of position as the coordinate change of the object.
Then, in the next stage, we consider the effect of the incident
illumination ray, which is projected onto the object and
reflected according to the Lambert’s cosine law. We will use
the results in [2], [33] for the second stage of the problem
and incorporate the effect of the motion.

Lambert’s cosine law relates the direction and intensity of
the light ray incident at a point of a 3D object, the albedo at the
point, and the surface normal to the reflectance intensity at an
image pixel that corresponds to the 3D surface point. If the
3D object is moving, then different points on that object can
correspond to the same image point, i.e., they lie on the same
ray passing through the image point. Let P and Q be two such
points on the object that project to the same image point.
Direction of illumination remaining constant, we need to
estimate the change in the surface normal and albedo from
point P to point Q in order to compute the reflectance
intensity at the pixel as generated by this point. Our
derivation of the bilinear subspace depends upon estimating
the change in surface norm and albedo, which in turn
depends upon the motion of the object.

3.1 Problem Formulation

In our problem, we need to consider only the relative motion
between the camera and the object. We assume a perspective
projection model for the camera. We fix the origin of the
frame of reference to the center of the projection of the
camera, the z-axis to be the optical axis, and assume that it
passes through the center of the image. Hence, the focal
length, f , of the camera is the only intrinsic parameter we
consider.2

For the moment, assume that, at time instance t1, we know
the 3D model of the object, its pose, and the illumination
condition in terms of the coefficients lt1ij, see (1). Without loss
of generality, we also assume that the pixel ðx; yÞ corresponds
to the point P1 at t1. Thus, from the LRLS theory, we have the
reflectance intensity for the pixel ðx; yÞ as:

Iðx; y; t1Þ ¼
X
i¼0;1;2

X
j¼�i;�iþ1...i�1;i

lt1ijbijðnP1
Þ: ð3Þ

Let us define the the motion of the object in the above
reference frame as the translation T ¼ Tx Ty Tz½ �T of the
centroid of the object and the rotation � ¼ !x !y !z½ �T
about the centroid. At the new time instance t2, the
illumination can change and is represented in terms of the
coefficients lt2ij . We will now derive the relationship between
Iðx; y; t1Þ, Iðx; y; t2Þ, T, �, lt1ij, and lt2ij .

The overall derivation of the joint motion and illumina-
tion space will proceed as follows: We will first derive the
new basis images, taking into consideration the motion of
the object. We show that the new bases are approximately of
the form ðATþB�Þ, where A and B are suitably defined
functions, the precise form of which we will derive. Next,
incorporating the lighting parameters (which can be
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represented as a linear expansion using the LRLS theory),
the joint motion and illumination space is shown to be
bilinear.

3.2 Computation of the New Basis Image

Let A and B represent the same object before and after
motion, respectively, as shown in Fig. 1. Consider the ray
from the optical center to a particular pixel ðx; yÞ. We can
find its intersection with the surface of the object by
extending the ray. With respect to the camera, the direction
of this ray does not change. Before the object’s motion, the
ray intersects with the surface at P1 (on A) and, after
motion, it intersects at P02 (on B). P1 (on A) moves to P01 (on
B) and P2 (on A) moves to P02 (on B). Note that P02 may not
overlap with P1; they are just on the same projection ray.
We will follow the convention of representing a point after
motion with a prime ð0Þ.

We first define some notation required for our deriva-
tion. Let

JP1
¼ J

@nP1

@P

� �
and � ¼ P2 �P1 ¼

�x
�y
�z

0
@

1
A;

where JP1
is the Jacobian matrix of the norm, nP1

, at point P1,

with respect to P ¼� ðx; y; zÞT , and � is the difference in the

coordinates of P2 and P1. Henceforth, we will refer to � as

the coordinate change.

From (1) and (2), we see that, when the illumination

coefficients, lij, are known, only the norm and the albedo of

the surface point of interest affect the reflection intensity at

a particular pixel. The change in norm and albedo is

obtained using the Jacobian matrix and gradient at the point

of interest, as well as the coordinate change, which, in turn,

is obtained from the motion information.
The norm changes from P1 to P2 and again from P2 to P02.

The first change is due to the fact that P2 is a different point on
the surface, while the second change is due to the motion of
the surface. Hence, the difference of nP1

and nP02
is a function

of the spatial (from nP1
to nP2

) and temporal (from nP2
to nP02

)
changes. Using the coordinate change � and the Jacobian
matrix of norm at P1, we are able to calculate the first order
difference between nP1

and nP2
. Using the motion informa-

tion, we can obtain the difference between nP2
and nP02

. The

albedo changes from P1 to P2, but is the same for P2 and P02.
Hence, the difference of �P1

and �P02
is a function of spatial

coordinates only, and can be obtained using the gradient of
albedo. We can express the change in norm and albedo up to a
first order approximation as

�n ¼ nP02
� nP1

¼ JP1
�þ @nP2

@t
�t ð4Þ

and

�� ¼ �P02
� �P1

¼ r�P1
�; ð5Þ

where r�P1
is the gradient of � at point P1. Thus, �n and

�� can be substituted into the expression for the basis
images in (2), which can be rewritten as

bijðnP02
Þ ¼ ð�P1

þ��ÞriYijðnP1
þ�nÞ

¼ bijðnP1
Þ þ r�P1

riYijðnP1
Þ�

þ �P1
rirYijðnP1

Þ�nþ oð�Þ:
ð6Þ

The last term is a higher order term and can be ignored
when � is small. Substituting �n from (4), we see that the
basis image is a linear function of �.

bijðnP02
Þ ¼ bijðnP1

Þ
þ r�P1

riYijðnP1
Þ�þ �P1

rirYijðnP1
ÞJP1

� �
�

þ �P1
rirYijðnP1

Þ @nP2

@t
�tþ oð�Þ:

ð7Þ
@nP2

@t is not a function of �, as we will show later in
Section 3.4. We next show how to solve for �.

3.3 Computation of Coordinate Change �

Since P02 and P1 are on the same ray, we can represent the
difference between them using a unit vector u under the
perspective camera model, i.e.,

P02 �P1 ¼ ku; ð8Þ

where

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ f2

p x
y
f

0
@

1
A ð9Þ

and k is a scalar. Since the motion of the object is considered
as a pure rotation with respect to its centroid and a pure
translation of the centroid, the new coordinate of P2 can be
expressed as

P02 ¼ RðP2 �T0Þ þT0 þT; ð10Þ

where R is the Rodrigues rotation matrix obtained from the
rotation � with respect to the centroid and T0 is the position
of the centroid of the object. Substituting it into (7), we get

ku ¼ RðP2 �T0Þ þT0 þT�P1: ð11Þ

Under the assumption of small motion, we have an
additional constraint. We may consider the new point P2

to be on the tangent plane that passes through the original
intersection point P1, i.e.,

nTP1
ðP1 �P2Þ ¼ 0: ð12Þ
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Using (11) and (12) and, after some algebraic manipulation
(see Appendix A), we can show that

� ¼ðR�1 � IÞðP1 �T0Þ �R�1T

�R�1
nTP1

ðR�1 � IÞðP1 �T0Þ �R�1T
� �

nTP1
R�1u

u:
ð13Þ

The coordinate change, �, obtained in (13) captures the
effect of the motion. However, as it is a nonlinear function of
the object motion variables T and �, its complex form makes
it difficult to analyze. Henceforth, we will denote this as �nl.

Since the motion is small, we can simplify the above
equation using certain approximations that neglect terms
with small magnitude with respect to terms with large
magnitudes. This will allow us to interpret the joint effect of
motion and illumination analytically, while sacrificing little
in terms of accuracy. Using a series of mathematical
calculations, we can obtain � as a linear function of the
motion variables (see Appendix B) as:

� ffi P̂�þT� 1

uTnP1

unTP1
P̂�� 1

uTnP1

unTP1
T

¼ I� 1

nTP1
u

unTP1

 !
P̂��T
� �

¼� CðP̂��TÞ;

ð14Þ

where P̂ ¼ ðP1 �T0Þ^.3

We will refer to this as �l. Henceforth, when we use �,
we will refer to �l; when required to be specific, we will
mention �l or �nl.

3.4 Temporal Change of Norm

In order to obtain the change of norm �n, we still need to
compute the effect of temporal change on the right-hand
side (RHS) of (4). Using the assumption of small motion, we
can compute:

@nP2

@t
� ¼ @ðnP1

þ JP1
�Þ

@t
¼ �� ðnP1

þ JP1
�Þ

¼�� nP1
þ oð�TÞ ffi ð�nP1

Þ^�

¼� � N̂�:

ð15Þ

As � is a linear function of the motion variables � and T, the
cross product of � and JP1

� is a second order term and can
be ignored when the motion is small. Thus, the temporal
change is not a function of �, a fact that was used in (7).

3.5 Bilinear Space of Motion and Illumination

Substituting (14) and (15) into (4), we get a linear expression
for �n as a function of motion variables, i.e.,

�n ¼ JP1
CP̂� N̂

� �
�� JP1

CT: ð16Þ

So far, we have expressed the coordinate and norm
change as linear expressions of the motion variables.
Substituting (14) and (16) into (1) and (7), which contain
the illumination variables, we have

Iðx; y; t2Þ ¼
X
i¼0;1;2

X
j¼�i;�iþ1...i�1;i

lt2ijbijðnP02
Þ; ð17Þ

where

bijðnP02
Þ ¼ bijðnP1

Þ þATþB�; ð18Þ

A ¼ �ri r�P1
YijðnP1

Þ þ �P1
rYijðnP1

ÞJP1

� �
C; ð19Þ

and

B ¼ �AP̂� ri�P1
rYijðnP1

ÞN̂: ð20Þ

In (18), bijðnP02
Þ are the basis images after motion. The

first term, bijðnP1
Þ, are the original basis images before

motion. They are only determined by the object model and
do not change with the variation of illumination. The
illumination change is reflected in the change of the
coefficients from lt1ij to lt2ij. The effect of the motion is
reflected in ATþB�, where the first term describes the
effect of translation, and the second term describes the effect
of rotation. Substituting (18) into (17), we see that the new
image spans a bilinear space of the motion variables and
illumination variables.

When the illumination changes gradually, we may use the
Talyor series to approximate the illumination coefficients as
lt2ij ¼ l

t1
ij þ�lij. Ignoring the higher order terms, the bilinear

space now becomes a combination of two linear subspaces,
defined by the motion and illumination variables.

Iðx; y; t2Þ ¼ Iðx; y; t1Þ þ
X
i¼0;1;2

X
j¼�i;...;i

lt1ijðATþB�Þ

þ
X
i¼0;1;2

X
j¼�i;...;i

�lijbijðnP1
Þ:

ð21Þ

If the illumination does not change from t1 to t2 (often a
valid assumption for a short interval of time), we see that
the new image at t2 spans a linear space of the motion
variables since the third term in (21) is zero.

3.6 Tensor Notation

We can express the above result succinctly using tensor
notation as

I ¼ B þ C �2
T
�

� �� �
�1 l; ð22Þ

where �n is called the mode-n product [22] and l 2 IR9 is the
vector of lij components. The mode-n product of a tensor
A 2 IRI1�I2�...�In�...�IN by a vector V 2 IR1�In , denoted by
A�n V, is the I1 � I2 � . . .� 1� . . .� IN tensor

ðA �n VÞi1...in�11inþ1...iN
¼
X
in

ai1...in�1ininþ1...iN vin :

For each pixel ðp; qÞ in the image, Cklpq ¼ ½A B � of size
9� 6. Thus, for an image of size M �N , C is 9� 6�M �N .
B is a subtensor of dimension 9� 1�M �N , comprised of
the basis images bijðnP1

Þ, and I is a subtensor of dimension
1� 1�M �N , representing the image. l is still the
9� 1 vector of the illumination coefficients.
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3. We define the skew symmetric matrix of a vector

X ¼
x1

x2

x3

0
@

1
A

as

X^ ¼ X̂ ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

0
@

1
A.



In [46], the authors assumed the face image lies in a
multilinear space parameterized by factors like illumina-
tion, viewpoint, identity, expression, etc., and then used
Multilinear Independent Components Analysis to recognize
faces. Our result provides a theoretical underpinning for
this assumed model.

3.7 Discussion on the Theoretical Result

Physical Interpretation. This bilinear space result integrates
the effects of illumination and motion in generating an
image from a 3D object using a perspective camera. When
the object does not move, the second and third motion
terms of the basis image bijðnP02

Þ are zero and the result is
the same as the one in [2], a 9D Lambertian Reflectance
Linear Subspace. When the illumination remains the same,
the reflectance image spans a linear subspace of motion
variables. When the illumination and motion variables all
change, the image space is “close to” bilinear. Thus, the joint
illumination and motion space for a sequence of images is
bilinear with (approximately) nine illumination variables
and six motion variables. The shape of the object is encoded
in the A and B matrices and in bijðnP1

Þ. The camera
intrinsic parameters are implicitly present in � (thus, in A
and B) through u. Therefore, (17) and (18) integrate the
motion, illumination, 3D structure, albedo, and camera
intrinsic parameters into one single framework.

Effect of Linearization. Fig. 2 shows the effect of
approximating the nonlinear function �nl in (13) with a
linear approximation �l. We plot the difference in the image
intensity (j true intensity - estimated intensity using �nlj and j
true intensity - estimated intensity using �lj) at a particular
point as a function of lt111 and !y. The rotation range is defined
as in Section 4 and the illumination changes in a typical range.
We take the intensity obtained from the LRLS method as the
true value. The difference in Fig. 2a is computed between the
true value and the intensity obtained with the linear
expression of �l (using (14)) and normalized with regard to
the true one. The difference in Fig. 2b is computed between

the true value and the intensity obtained with the nonlinear
expression of �nl (using (13)) and also normalized with
regard to the true one. As can be seen, there is no perceptible
difference between the bilinear and nonlinear image spaces.

Generalizations of the theory. Even though the above
result is derived using previous work on the LRLS theory,
the basic result (i.e., the joint motion and illumination space
is bilinear with the bases of this space determined by the
surface normals and camera intrinsic parameters) is valid in
more general circumstances. If we can write the image
appearance as a linear dot product of lighting coefficients
and basis images and, if the basis images change linearly
with the 3D rigid motion parameters, the joint motion and
illumination space will be bilinear. This could be achieved
using higher order coefficients in the spherical harmonics
representation of illumination or a different set of basis
functions [43], [32]. However, for other basis functions, the
precise form of the expression would have to be rederived,
while using higher order spherical harmonics coefficients
would require imposing additional constraints to enforce
nonnegativity of the lighting function (see [19] for details).
Also, for glossy surfaces, the gradient of the albedo can
have high frequency components which can affect the
parameter estimates in scene understanding applications.

Effect of scale changes. To understand this, we consider
that the motion is purely in the direction of the optical axis,
i.e., zooming effect. Irrespective of how the objects move, (11),
is satisfied. Thus, even when the object moves toward the
camera, the intersection points of a ray with the object surface
at two consecutive time instances should still be close to each
other, provided the motion is small. Therefore, P2 can still be
considered to be on the tangent plane passing through P1. So,
(11) and (12) are satisfied and the coordinate change �, which
completely determines the change of norm and albedo, can be
calculated accurately. We will show some images of this case
in Section 4.

The motion of a plane. When the plane moves with pure

translation, there is no difference between nP2
and nP02

(in
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Fig. 2. (a) Shows the normalized error for one particular pixel between true intensity and the estimate obtained with linear approximation, �l, in (14).

(b) Shows the normalized error for the same pixel between the true intensity and the estimate with nonlinear approximation, �nl, in (13). The error is

plotted for a typical variation range for l11 and rotation of the object. The form of the error surface is similar for the other motion and illumination

changes.



Fig. 1); thus, the change of norm is completely due to the

spatial component in (4). When the object plane moves with

pure rotation confined to the image plane, the rotation axis

is parallel to the norm on the object plane; thus, nP2
and nP02

are the same, so the change of norm again has only the

spatial component. When the object plane purely rotates but

the rotation is not confined to the image plane, there will be

both spatial and temporal change of the norm. So, the

change of norm, which determines the reflectance intensity,

can be described by the theory. The albedo change is the

same as in the main theory (see (5)).
Pixels for which the unit vector u is perpendicular to

the norm. In this case, (11) is still satisfied; however,
because the ray is now coplanar with the tangent plane
passing through P1, there are an infinite number of
solutions for (12). In implementing the theory, this affects
all points for which the angle between the unit vector u and
the norm nP are very close to 90�, making the denominators
in (13), (14), (24), (25), (26), (28), (30), (31), (32), (34) very
small. In this case, the two constraints ((11), (12)) for
calculating the coordinate change � become only one and it
is not possible to compute �. However, this happens only
at a very few points near the object’s edge (e.g., near the
edge of a face) and is not a serious impediment to the
application of the theory in practical problems. In the
implementation, the value of the pixels where this happens
is replaced with values from nearby pixels. This is not a
shortcoming of our theory since it is not possible to view a
point if the viewing direction and the surface normal are
perpendicular (there is no light reflected along the viewing
direction).

Applications of the theory. The theoretical result has
important applications in image sysnthesis, illumination
invariant tracking, 3D modeling, object recognition, video
compression, and others. All of these methods would rely on
computing the basis images, which are a function of the
surface normal. In practice, the surface normals are computed
by finding the intersection of the ray passing through a pixel
with a 3D point, assuming that the 3D model is represented by
a cloud of points. The normal is then calculated by
considering neighboring points. If a mesh model of the object
is used, the intersection of the ray with a triangular mesh is
computed and the normal to this mesh patch is calculated.

4 EXPERIMENTAL ANALYSIS

In this section, we experimentally analyze the theoretical
results obtained above. Specifically, we show the accuracy
of an image obtained by the above model with a true image.
We also show the results of synthesized images.

The above derivation is based on the small motion
assumption, which is used in three places. First, it is used to
obtain (12) by making the tangent plane approximation.
Next, the small motion assumption is used to obtain the
linear approximation of (14). The third place where it is
used is the first order approximation of the norm and
albedo. We show that the effect of this assumption on the
resultant video sequences is very small.

For the sake of brevity, we show the effect of the translation
along and rotation about the y-axis on the change of albedo,
norm and �. We also compare the synthesized images with
those obtained with LRLS theory. The results are similar for

other combinations of motion. For the experimental error
analysis in Fig. 3, the translation is normalized with respect to
the width of the face and the unit of the rotation is degree. In
addition, the pose is fixed as the front view and the
illumination is fixed from the front of the face. In this
experiment, we calculated the errors in a typical motion
range. We assume the largest distance the face can move
along the positive and negative directions of y axis in one
second is half of the width of the face. We also assume that the
largest angle the face rotates in one second is 30�. Using the
convention of 30 frames per second, we can get that the
maximum translation between the consequent frames is 0:5

30 ¼
0:0167 of the width of the face (henceforth referred to as the
0.0167 normalized translation unit) and the maximum
rotation between consequent frames is 30�

30 ¼ 1�. So, we
calculate the error in the range of -0.020 normalized
translation units to +0.020 normalized translation units and
the rotation from�1:00� toþ1:00�. In addition, because of the
discontinuity effects at the extremities of the face, there may
be a few points with large errors. To avoid the bias caused by
these points, we represent the total error using the median of
the errors of all the points.

Fig. 3a depicts the difference between �nl and �l

normalized with regard to �nl. Within the typical motion
range defined above, the largest relative error of the linear
solution (with regard to the nonlinear solution) is about
5 percent. Next, in Figs. 3b and 3c, we compute the error
introduced by the first order approximation of nP02

and �P02
(see (4) and (5)). We compute the normalized error as the
difference of these variables obtained using our theory and
those obtained using the LRLS theory in [2] (see Section 2)
and normalized with regard to the LRLS results obtained
for each image separately. Fig. 3d gives the normalized
error of the image obtained with the bilinear approximation
of (17) and (18). We see that the maximum error in all of the
above cases is about 5 percent. Typically, the motion
between the consecutive frames is much smaller than the
extremities of the above range; hence, the difference in
practice is about 2 � 3 percent. Moreover, if we consider
only rotation, the error at the extremities of the above range
is 1 � 2 percent. (See Figs. 2a and 2b.) Fig. 3e computes the
normalized error of the images obtained with the nonlinear
expression of coordinate change in (13). The normalized
error of the images obtained with linear coordinate change
(14) in Fig. 3d and nonlinear coordinate change (13) in
Fig. 3e are very similar, which validates the approximations
in the linearization part of the derivation.

Finally, we synthesized a video sequence of a rotating face
with our theory and LRLS theory respectively. The image
resolutions is 240� 320 pixels for all the images and the
generic face model is rotating along y axis from�30� toþ30�.
Illumination changes in the same way as pose, and always
comes from the front of the face. Fig. 3f gives the normalized
error of the video sequence synthesized with our theory. The
maximum error is about 5 percent, though, as we show next,
there is no perceptible difference in image quality.4 Moreover,
the computational complexity for generating a sequence of
images using our theory is much lower than that using the
LRLS theory. The time taken to compute the first frame is the
same in both cases; for subsequent frames, LRLS has to repeat
the same procedure, while our approach uses the bilinear
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4. The periodicity appears because we do the reinitialization for every
20 frames.



space of (17) and (18), the computation of which is very fast. In
our implementation (which has not been optimized for
efficiency), generating each frame using LRLS theory will
take 15 � 20 seconds, while generating 20 frames with the
bilinear space takes almost the same time.

Next, we applied our theory to a 3D face to synthesize
image sequences for different combinations of motion and
illumination directions using the bilinear space theory. In
Fig. 4, the pose of the 3D face is fixed and illumination is
rotating with respect to the face. From (17) and (18), T and
� are zero, basis images bij remain the same, and only lij
change. Thus, all of the images lie in a linear subspace of lij.
The results obtained here are the same as using the LRLS
theory. In Fig. 5, illumination is fixed but the face is rotating

about y-axis from �25� to þ25�, thus lij are fixed and bij is a
linear function of T and �; thus, Iðx; y; t2Þ lies in a linear
subspace of the motion variables. For comparison, we also
show the results using the LRLS theory repeated for each
pose. There is no perceptible difference between the images
synthesized by the two methods, while the time taken for
synthesizing is drastically less than that for LRLS theory.
(see the last sentence of the previous paragraph).

In Fig. 6, we show synthesis results using the data in [4].
The face is moving and the illumination always comes from
the front of the face, thus bij is a linear function of T and �,
and Iðx; y; t2Þ is the combination of bij with varying
coefficients lij. Thus, Iðx; y; t2Þ lies in a bilinear space of
the illumination and motion variables. We also show
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Fig. 3. (a) Normalized difference of the linear and nonlinear coordinate change, �l��nlj j
�nlj j . (b) Normalized difference of the norm,

nP0
2
��nP0

2

��� ���
�nP0

2

��� ��� , where nP02
is

the first order approximation of the norm at point P02 with linearized coordinate change and �nP02
is the true value of the norm at point P02. (c) Normalized

difference of the albedo change,
�P2
���P2j j

��P0
2

��� ��� , where �P2
is the first order approximation of the albedo at point P02 with linearized coordinate change and ��P02

is the true value of the albedo at point P02. (d) Normalized difference of the synthesized image,
Ið:;:;t2Þl�Ið:;:ÞLRLSj j

Ið:;:ÞLRLSj j , where Ið:; :; t2Þl is the image generated

by linear coordinate change �l and Ið:; :ÞLRLS is the image obtained with the LRLS theory.



synthesized images when the face is moving toward the
camera. In Fig. 7, we use the human body model to
synthesize image sequences under varying illumination.
The human body is rotating about the vertical axis and the
illumination is changing in the same way.

5 APPLICATION TO 3D MOTION ESTIMATION

In this section, we demonstrate the application of the theory

developed earlier in the paper to the problem of 3D motion

estimation. We also recover the illumination model para-

meters. The input is a video sequence captured under

arbitrary conditions of motion and illumination. We would

like to emphasize that this section provides an example of

an application of the theory in tracking an object under

variable illumination. It is not possible to include more

generalized tracking scenarios (e.g., occlusion, clutter,

multiple objects) within the constraints of this paper. They

will be the focus of future work.

Estimating 3D motion from video has been one of the most

extensively studied problems in computer vision. One of the
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Fig. 3 (continued). (e) Normalized difference of the synthesized image,
Ið:;:;t2Þnl�Ið:;:ÞLRLSj j

Ið:;:ÞLRLSj j , where Ið:; :; t2Þnl is the image generated by the nonlinear

coordinate change �nl. (f) Normalized error as in (d), plotted as a function of time for a video sequence.

Fig. 4. Reflectance images under fixed pose and rotating illumination. All

these images lie in a linear subspace of illumination variables.

Fig. 5. Reflectance images of the face rotating along the vertical axis

under fixed illumination. The images in the upper row are generated by

our theory and the images in the lower row are generated by the LRLS

theory repeated for each pose.

Fig. 6. Reflectance images of the moving face with changing illumination
directions. Illumination changes in the same way as pose and always
comes from the front of the face. We also show synthesized images
when the face moves toward the camera. The results are obtained using
the data from the Three-Dimensional Morphable Face Model described
in [4].

Fig. 7. Reflectance images of a rotating human body under varying

illumination generated by the bilinear space.



well-known approaches is to use optical flow and the SfM

formulation to reconstruct 3D motion [48], [9]. However,

optical flow involves the brightness constancy constraint,

which is violated when the illumination is static, but the object

moves relative to the direction of illumination. Pentland [30]

coined the term “photometric motion” to define the intensity

change of an image point due to object rotation and applied it

to solve for shape and reflectance. Zhang et al. [49] modeled

lighting changes by introducing illumination-specific para-

meters into the standard optical flow equation. Another well-

known approach for 2D motion estimation in monocular

sequences is the Kanade-Lucas-Tomasi (KLT) tracker [40],

[20], which selects features that are optimal for tracking.

Hager and Belhumeur [14] proposed using a parameterized

function to describe the movement of the image points, taking

into account illumination variation by modifying the bright-

ness constancy constraint. Freedman and Turek in [11]

proposed graph algorithms for illumination invariant track-

ing. All of these methods deal with estimation of 2D motion.

Illumination invariant 3D tracking is considered within the

Active Appearance Model (AAM) framework in [38], but the

method requires training images. A review of 3D model-

based motion estimation algorithms is available in [25], but

most of them do not have explicit illumination models.

Our theory, which provides an explicit expression for all of

the images that an object can produce under arbitrary motion

and illumination conditions, allows us to develop a theore-

tical framework for estimating the 3D motion of an object

under changing illumination conditions. Also, we are able to

recover the illumination conditions as a function of time. This

is based on inverting the generative model for motion and

illumination modeling. We can handle the cases of gradual

and sudden change of complicated lighting patterns that

include combinations of point and extended sources. We

assume that an approximate 3D model of the object that we

are trying to track is available (e.g., a generic model of a face)

and the tracking algorithm is initialized by registering it to the

first frame of the sequence.

5.1 Illumination Invariant 3D Motion Estimation

Equation (17) provides us an expression relating the reflec-

tance image It2 with illumination coefficients lt2ij and motion

variables T, �, which leads to a method for estimating

3D motion and illumination as:

ð̂l; T̂; �̂Þ ¼ arg min
l;T;�
kIt2 �

X
i¼0;1;2

Xi
j¼�i

lt2ijbijðnP02
Þk2

¼ arg min
l;T;�
kI t2 � Bt1 þ Ct1 �2

Tt2

�t2

� �� �
�1 lt2k2;

ð23Þ

where x̂ denotes an estimate of x. The cost function is a

square error norm, similar to the famous bundle-adjustment

[15], but incorporates an illumination term and motion and

illumination estimates are obtained for each frame. Since

the image It2 lies approximately in a bilinear space of

illumination and motion variables, such a minimization

problem can be achieved by alternately estimating the

motion and illumination parameters by projecting the video

sequence onto the appropriate basis functions derived from

the bilinear space. Assuming that we have tracked the

sequence upto some frame for which we can estimate the

motion (hence, pose) and illumination, we calculate the

basis images, bij, at the current pose and write it in tensor

form B. Unfolding5 B and the image I along the first

dimension [22], which is the illumination dimension, the

image can be represented as:

ITð1Þ ¼ BTð1Þl: ð24Þ

This is a least square problem and the illumination l can be

estimated as:

l̂ ¼ ðBð1ÞBTð1ÞÞ
�1Bð1ÞITð1Þ: ð25Þ

Keeping the illumination coefficients fixed, the bilinear

space in (17) and (18) becomes a linear subspace, i.e.,

I ¼ B �1 lþ ðC �1 lÞ �2
T
�

� �
: ð26Þ

Similarly, unfolding all the tensors along the second dimen-

sion, which is the motion dimension, T and � can be

estimated as:

T̂

�̂

 !
¼ ðC �1 lÞð2ÞðC �1 lÞTð2Þ
� 	�1

ðC �1 lÞð2Þ

� ðI � B �1 lÞTð2Þ:
ð27Þ

This can be repeated for each subsequent frame. The above

procedure for estimation of the motion should proceed in

an iterative manner since B and C are functions of the

motion parameters. This should continue until the projec-

tion error kI � B �1 l̂k2 does not decrease further. This

process of alternate minimization leads to the local

minimum of the cost function (which is quadratic in

motion and illumination variables) at each time step. We

now describe the tracking algorithm formally.

Tracking Algorithm

Consider a sequence of image frames It, t ¼ 0; . . . ; N � 1.

Initialization: Take one image of the object from the video

sequence, register the 3D model onto this frame, and map

the texture onto the 3D model. Use LRLS method [2] to

calculate the tensor of the basis images B0 at this pose. Use

(25) to estimate the illumination coefficients. Now, assume

that we know the motion and illumination estimates for

frame t, i.e., Tt;�t, and lt.
Step 1. Calculate the tensor form of the bilinear basis

images Bt at the current pose using (18). Use (27) to estimate

the new pose from the estimated motion.
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5. Assume an Nth-order tensor A 2 CCI1�I2�...�IN . The matrix unfolding
AðnÞ 2 CCIn�ðInþ1Inþ2 ...IN I1I2 ...In�1Þ contains the element ai1i2...iN at the position
with row number in and column number equal to ðinþ1 � 1ÞInþ2Inþ3 . . .
INI1I2 . . . In�1þðinþ2�1ÞInþ3Inþ4 . . . INI1I2 . . . In�1þ� � �þðiN � 1ÞI1I2 . . . In�1

þði1 � 1ÞI2I3 . . . In�1 þ � � � þ in�1.



Step 2. Assume illumination does not change, i.e., l̂tþ1 ¼ l̂t.

If the MSE between an input frame and the rendered frame,

kI tþ1 � Bt þ Ct �2
T̂tþ1

�̂tþ1

� �� �
�1 l̂tþ1k2;

is above a certain threshold (in the experimental section, we

will discuss our strategy for choosing a appropriate

threshold), repeat Step 1 for I tþ1, till the MSE falls below
an acceptable threshold.

Step 3. If the MSE is still larger than some threshold,

reestimate the illumination using (25). Repeat Steps 1 and 2

with the new estimated l̂tþ1 for that input frame.

Step 4. Set t ¼ tþ 1. Repeat Steps 1, 2, and 3.

Step 5. Continue till t ¼ N� 1.

In many practical situations, the illumination changes

slowly within a sequence (e.g., cloud covering the sun). In

this case, we use the expression in (21) instead of (17) and

(18) in the cost function (23) and estimate �lij.

Figs. 8, 9, and 10 show the results of our tracking

algorithm on a controlled data sequence. The images in

Fig. 8 are synthesized from a 3D model and, thus, the

motion and illumination are known. The face is rotating

along y axis from �30� to þ30� and the illumination is

changing in the same way as pose. The resolution of the

image is 240� 320. Figs. 9 and 10 show plots of the

estimated motion and illumination against the true values.

Finally, we show the results of the tracking on two real

video sequences in Fig. 11, one of a face moving arbitrarily

under varying illumination and the other of a person

walking in a corridor where the light changes significantly.

The image resolution is 240� 320. Here, we map the texture

of the person onto a generic 3D face model in order to

perform the tracking. This is done by registering a few

control points on the 3D model to the image of the face in

the front view. We see from the results that the tracking is

quite accurate and can handle different kinds of motion,

including changes of scale.

6 CONCLUSIONS

In this paper, we have shown that the joint space of motion

and illumination variables lies “close” to a bilinear sub-

space consisting of (approximately) nine illumination

variables and six motion variables. The main novelty of

our work is to formulate the combined effects of motion and

illumination in the reflectance image. A detailed derivation

of the bilinear space from fundamentals is presented.

Experimental analysis of the theory, synthesized results of

face images under varying motion and illumination and

application in 3D motion estimation under varying illumi-

nation are presented. Future work will involve 3D model-

ing from a monocular video sequence under varying

illumination, object recognition across illumination, and

pose variations, and accounting for specularities in the

image (which are not modeled by Lambert’s law). We also

to plan to extend the theory for the analysis of deformable

objects in video sequences.

APPENDIX A

DERIVATION OF (13)

Equation (13) is the nonlinear solution of � from (11) and (12)
in Section 3. From (11), we have

P2 ¼ R�1ðkuþP1 �T0 �TÞ þT0: ð28Þ

Substituting it into (12), we can solve for k as

k ¼ �
nTP1
ððR�1 � IÞðP1 �T0Þ �R�1TÞ

nTP1
R�1u

: ð29Þ

Substituting back into (11), P2 can be expressed as

P2 ¼ �R�1
nTP1
ððR�1 � IÞðP1 �T0Þ �R�1TÞ

nTP1
R�1u

u

þ ðR�1 � IÞ P1 �T0ð Þ �R�1TþP1:

ð30Þ

Thus, the coordinate difference between P2 and P1

� ¼ðR�1 � IÞðP1 �T0Þ �R�1T

�R�1
nTP1
ðR�1 � IÞðP1 �T0Þ

nTP1
R�1u

u

þR�1
nTP1

R�1T

nTP1
R�1u

u;

ð31Þ

from which (13) follows.
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Fig. 8. The back projection of the mesh vertices of the 3D face model using

the estimated 3D motion onto some input frames. The face is rotating

about the y axis and illumination is changing in the same way as pose.

Fig. 9. The solid line shows the true pose (represented by the angle of

face about y axis) and the broken line is the estimated pose.



APPENDIX B

DERIVATION OF (14)

When the motion is small, the inverse of the Rodrigues

Rotation Matrix R�1 can be obtained from �� as

R�1 ffi
1 !z �!y
�!z 1 !x
!y �!x 1

0
@

1
A:

So, the first term in the RHS of (31) can be rewritten as

ðR�1 � IÞðP1 �T0Þ

ffi
0 �Pw1z þ T0z Pw1y � T0y

Pw1z � T0z 0 �Pw1x þ T0x

�Pw1y þ T0y Pw1x � T0x 0

0
B@

1
CA

!x

!y

!z

0
B@

1
CA

¼� P̂�:

ð32Þ

For the third term in (31), we have

R�1
nTP1
ðR�1 � IÞðP1 �T0Þ

nTP1
R�1u

u ffi R�1
nTPbf1

P̂�

nTP1
R�1u

u

¼ R�1 1

nTP1
R�1u

nTP1
P̂�

� 	
u ¼ R�1 1

nTP1
R�1u

unTP1
P̂�

¼ 1

nTP1
R�1u

R�1unTP1
P̂�:

ð33Þ

Since u is a unit vector, each of its components is each less
than or equal to 1. However, due to the small motion
assumption, the elements of � are far less than 1. Thus,

R�1u ¼
 1 !z �!y
�!z 1 !x
!y �!x 1

!
ux
uy
uz

0
@

1
A ffi u: ð34Þ
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Fig. 10. (a), (b), (c), and (d) are the estimates of the third, fifth, sixth, and eighth illumination coefficients, respectively. The solid line shows the true
illumination coefficients using the LRLS method and the dotted line shows the estimated illumination coefficients. More detailed analysis of the
illumination estimation process will be provided in the future.



Substituting back into (33), we have

R�1
nTP1
ðR�1 � IÞðP1 �T0Þ

nTP1
R�1u

u ffi 1

nTP1
u

unTP1
P̂�: ð35Þ

Using similar reasoning for the fourth term on the RHS of

(31), we have

R�1
nTP1

R�1T

nTP1
R�1u

u ¼
nTP1

R�1T

nTP1
R�1uR�1u

ffi
nTP1

R�1T

nTP1
u

u

¼ 1

nTP1
u
ðnTP1

R�1TÞu ¼ 1

nTP1
u

unTP1
R�1T:

ð36Þ

Consider

R�1T ¼
1 !z �!y
�!z 1 !x
!y �!x 1

0
@

1
A Tx

Ty
Tz

0
@

1
A ffi T: ð37Þ

Substituting back into (31), we get

R�1
nTP1

R�1T

nTP1
R�1u

u ¼ 1

nTP1
u

unTP1
T: ð38Þ

Substituting (27), (30), (32), and (33) back into (31), we have

� ffi P̂�� 1

nTP1
u

unTP1
P̂��T� 1

nTP1
u

unTP1
T

¼ I� 1

nTP1
u

unTP1

 !
P̂��T
� �

:

ð39Þ
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