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ABSTRACT

For actively developing tissues, a computational platform ca-
pable of automatically registering, segmenting and tracking
cells is very critical to obtaining high-throughput and quanti-
tative measurements of a range of cell behaviors, and can lead
to a better understanding of the underlying dynamics of mor-
phogenesis. In this work, we present an automated landmark-
based registration method to register shoot apical meristem
of Arabidopsis Thaliana images obtained through the Con-
focal Laser Scanning Microscopy technique. The proposed
landmark-based registration method uses local graph-based
approach to automatically find corresponding landmark pairs.
The registration algorithm combined with an existing track-
ing method is tested on multiple datasets and it significantly
improves the accuracy of cell lineages and division statistics.

Index Terms— registration, shoot apical meristem, live
imaging

1. INTRODUCTION

The subject of this study, the shoot apical meristem (SAM), is
the most important part of the plant body because it supplies
cells for all the above ground plant parts and at the same time
maintains its stable size. Therefore, a tight spatio-temporal
co-ordination between cell division and differentiation of
progeny cells into organs is critical to maintain the stabil-
ity of SAMs. However, the causal link between cell growth
and division and how they affect organ formation is not well
understood due to the lack of quantitative measurement of
growth patterns. This necessitates the development of com-
putational platforms capable of automatically tracking cells
and cell division patterns.

The SAM of Arabidopsis Thaliana consists of approximately
500 cells and they are organized into multiple cell layers that
are clonally distinct from one another. For complex multi
layered, multi cellular plant and animal tissues, the most
popular method to capture individual cell structures is the
Confocal Laser Scanning Microscopy (CLSM) based Live
Cell Imaging. By changing the depth of the focal plane,
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CLSM can provide infocus images from various depths of
the specimen. To visualize cell boundaries of all the cells
in the SAM, plasma membrane-localized Yellow Fluorescent
Protein (YFP) is used. The set of images, thus obtained at
each time point, constitute a 3-D stack, also known as the
"Z-stack’. Each Z-stack is imaged at a certain time interval
(e.g. three or six hours between successive observations) and
it is comprised of a series of optical cross sections of SAMs
that are separated by approx. 1.5 pm, and a standard shoot
apical meristematic cell has a diameter of about 5 - 6 pum.

In practice, the live cell imaging of Arabidopsis SAM com-
prises of several steps, where the plant has to be physically
moved between different places. For normal growth of the
plant, it has to be kept in a place having specific physical
conditions (temperature of 24°C'). The plant is moved and
placed under microscope at the imaging/observational time
points, before it is placed back to the aforementioned place
once again. For 72 hours overall, this process is repeated
every three hours. Because of this process of replacement
of the plant under the microscope and also since the plant
keeps growing during these 72 hours, various shifts can oc-
cur between two Z-stacks of images taken in consecutive time
points, though images in any Z-stack are automatically regis-
tered. Fig. 1 (B) demonstrates an example with noticeable
shifts between images. So to get the accurate and longer cell
lineages and cell division statistics image stacks should be
aligned. In this paper we show how to perform automatic im-
age registration for the Arabidopsis SAM image stacks.

2. RELATION TO PREVIOUS WORK

Recently, there has been some work done on SAM cells [1],
where cells are segmented by watershed algorithm [2] and
tracked by local graph matching method. The method in [1]
was constrained to focus on datasets that are approximately
registered. Therefore, registration is of utmost importance
to be able to work with varied datasets. Popular registra-
tion method based on maximization of the mutual information
[3, 4], fails to provide accurate registration as it uses the pixel
intensities to acquire the registration. Pixel intensities in the
Arabidopsis SAM images are not discriminative features. The
landmark-based methods are more suitable to register such
images. A recent paper [5] uses SAM images acquired from
multiple angles to automate tracking and modeling. For pair
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Fig. 1. Methodology in Sparse Confocal Image Stacks - A) SAM located at the tip Arabidopsis shoot, B) raw images taken at
consecutive time instances, C) segmented images after applying watershed segmentation, D) estimation of the corresponding
landmark point pairs, E) bottom image is registered to the top image (the same color arrows represent the same cell)

of images to be registered, the user identified correspondences
by pairing a few anchor points (referred as landmark points in
this work).

In this work, we present a fully automated landmark-based
registration method that can find out correspondences be-
tween two images and utilize these correspondences to yield
a better registration result. In the experimental results section
we show that landmark-based registration is more suitable for
noisy and sparse confocal images, than registration based on
maximization of the mutual information.

The most common landmark-based registration algorithm is
the Iterative Closest Point (ICP) algorithm [6], where a set of
landmark point pair correspondences are constructed between
two images and then the images are aligned so as to minimize
the mean square error between the correspondences. The ICP
algorithm is very sensitive to initialization; it provides a good
estimate of the correct correspondence when the images are
approximately aligned with each other. There are different ad-
ditions to the basic ICP algorithm, e.g. Iterative Closest Point
using Invariant Features (ICPIF) [7], that uses features like
eccentricity and curvature to overcome the issue. But in Ara-
bidopsis SAM, because densely packed cells have very simi-
lar features, the eccentricity, curvature and other common fea-
tures such as shape, color, etc. are not discriminative enough
to be used for the registration. Thus available landmark-based
registration approaches may not be able to properly align the
SAM images. This is why we need to develop a novel fea-
ture that can be used to register SAM images. The proposed
landmark estimation method uses features of the local neigh-
borhood areas to find corresponding landmark pairs for the
image registration.

3. LANDMARK-BASED REGISTRATION

In this paper, we present automatic landmark-based registra-
tion method for aligning Arabidopsis SAM image stacks. The
procedure of getting the corresponding landmark point pairs
and registering images is the following.

1. Watershed segmentation is applied on the images to get
the individual cell information, such as cell position and area.

2. The proposed method is applied on the segmented im-
ages; a number of landmark points are selected from the im-

ages and correspondence is established between them.

3. Positions of the corresponding landmark pairs are used
to estimate the parameters of the transformation model and
the estimated transformation function maps the rest of the
points in the input image to the reference image.

This process is described in Fig. 1. In the rest of this section
we call the image that we wish to transform as the input im-
age, and the reference image is the image against which we
want to register the input.

3.1. Landmark Identification

As described in Section 1, there is accumulated random shift,
rotation or scaling between the images taken at different time
points. The performance of tracking is affected by the regis-
tration. The quality of the image registration result depends
on the accuracy of the choice of the landmark points. As
we already described, common features such as shape, color
etc. can not be used to choose corresponding landmark pairs.
Motivated by the idea presented in [1], we use the relative
positions and ordered orientation of the neighboring cells
as unique features. To exploit these properties we repre-
sent these local neighborhood structures as graphs and select
the best candidate landmark points that have the minimum
distance between the local graphs built around them.

Local graphs as features - Graphical abstraction is created on
the collection of cells. Vertices in the graph are the centers of
the cells and neighboring vertices are connected by an edge.
Neighborhood set N (C') of a cell C contains the set of cells
that share a boundary with C. Thus every graph consists of a
cell C and a set of counter-clockwisely ordered neighboring
cells (Fig. 2 (A,D)). The ordering of the cells in N(C) is im-
portant because under nonreflective similarity transformation,
the absolute positions of the neighboring cells could change
but the cyclic order of the cells remains invariant.

Landmark point pair estimation from local graphs - Cell di-
visions happen throughout the 72 hour intervals but at the
consecutive images, taken every three hours apart, only sev-
eral cell divisions are present. Ideally, in the areas where there
is no cell division, the local graph topology should not change
(segmentation errors will circumvent this in practice). We




Ni, Ni, — ilm and i, th neighboring cells of C,

Ny N, 7]'1”[ and j, th neighboring cells of C’,

On,, N,y (t) — angle between N; C and N;,C,

O, crmr), (t + 1) — angle between N'; C" and N';,C’,
.lfC’N!,1 (1), lC-N.Z (t) — edge lengths,

ICIJth (t+ 1), lcv'thz (t + 1) — edge lengths,

ANil(t)’ AN[z (t) — areas of the cells N, and Ny,

An;, (t+ 1),AN,J2 (t +1) — areas of the cells N';, and N'},

Fig. 2. A,D) The local graphs Gy and G at time ¢ and ¢+ 1 with the central cells C' and C” respectively, and counter-clockwisely

ordered neighboring cell vertices Ny, ..., Ng and N7, ..

exploit these conditions to find the corresponding landmark
pairs in two images. Let, G(lt) and G(2t+1) be two local graphs
constructed around the cells C' and C’ in consecutive tempo-
ral slices (Fig. 2). For each subgraph of the local graph G(¢),
we define feature vector the following ways;

FOt)y=[fi fo fs [a
fi=0n,, o, (1),
fa=lon, (), fs =lcn, (1),
f4 = ANil (t>7 f5 = ANiZ (t)

We define the distance between two triangle subgraphs as

f5]*, where

, 5 N2
Drs (FEO).(FF 1+ 1) = 3 (2724)
where f, € FC(t), fi € F]-Cl (t+1).

To ensure that our landmark estimation method takes care
of the rotation of the local area, we consider all cyclic per-
mutations of the counter-clockwise ordered neighbor set
{N{,N},..., N/ } of the cell C’ from the input image. The
cyclic permutations of the set {i1,42,...,%m,} can be writ-
ten in terms of the shift & (k = 0,1,...,(m — 1)) as the set
{((’Ll +k— 1)mod(m) +1)a ) ((Zm +k_ l)mod(m) + 1)} As
an example, if (1,2, 3) is the given sequence, then possible
values of the shift £ = 0,1, 2 and all the cyclic permutations
of the sequence (1,2,3) will be (1,2,3),(2,3,1),(3,1,2)
for k = 0,1,2. We consider all cyclic permutations of the
counter-clockwise ordered neighbor set { Ny, Nj,..., N/ }
of the cell C’ from the input image and define the distance
D(G1, G%) between two local graphs G and G5 based on
the chosen permutation corresponding to shift k as

D(G1,G8) = 5 Drs (FE@), (FF (t+1))

{i.g}
Vie{1,2,...,m}, j=I[(+k—1)modim)+1]

for k € {0,1,2,...,(m — 1)}. We compute the sum of
the distances between each of the ordered pairs of triangle-
subgraphs for each permutation &.

The distance D*(G1,G2) between two graphs G; and Gs
corresponding to cells (C, C") for all permutations k is

D*(Gy,Gs) = D(G1, G5

., N§, B,C) two enlarged triangle subgraphs with indicated features

where k* = arg, min D(G1,G%),k € {0,1,...,(m — 1)}.
This guarantees that our landmark estimation method is in-
variant of the rotation in the local area.

For all cell pairs Cj, CJ‘ and corresponding graphs G;, G
from two consecutive images, we compute the distance
D*(G;,Gj). Then the cell pairs are ranked according to
their distances D* and the top ¢ cell pairs are chosen as
landmark point pairs. The choice of ¢ is described later.

3.2. Image Registration

Once we have the landmark point pairs corresponding to the
reference and input images, we find the spatial transformation
between them. Finding the nonreflective similarity transfor-
mation between two images is a problem of solving a set of
two linear equations. As mentioned before, for better accu-
racy of transformation parameters the top ¢ landmark point
pairs are used in a least square parameter estimation frame-
work. The choice of ¢ depends on the quality of the input
and base image as choosing more landmark point pairs gen-
erally increases the risk of having more false positive land-
mark point pairs.In our experiments we choose four, five or
six landmark pairs depending from the dataset image quality.

4. EXPERIMENTAL RESULTS

We have tested our proposed automatic landmark-based reg-
istration method, combined with the watershed segmentation
[2] and local graph matching based tracking [1], on two dif-
ferent datasets.We compared tracking results of the proposed
method with results obtained without registration, with semi-
automated registration (the landmark pairs are chosen man-
ually, the transformation is obtained automatically) and with
MIRIT software ([4]).

Pairwise Tracking - Fig. 3 (A-E) shows cell tracking re-
sults from two consecutive images (30" and 36" hour).The
results with MIRIT registration and without registration show
incorrect cell tracks. Whereas the proposed method and semi-
automated registration correctly registered two images with
100% correct tracking results. Detailed results for the same
dataset are shown in Fig. 3 (F). We can see that from 33 and
27 cells, present in the images at time points 5 (30" hour)
to 6 (36" hour) respectively, none are tracked by the tracker
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Fig. 3. A) Raw consecutive images (the same color arrows represent the same cells), tracking results obtained B) without
registration C) with MIRIT registration, D) with manual registration, E) with proposed automatic registration. The same colors
represent the same cell. F) Number of tracked cells across two consecutive images.
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Fig. 4. Length of cell lineages for two different datasets A,B.

run on the images registered with the MIRIT software and not
registered images (as in Fig. 3 (A-E)). The same result is seen
for the tracking results in images at time points 6 to 7. But the
tracking results obtained with proposed and semi-automated
methods provided very close to manual results.

Table 1. Total Number of Cell Divisions/Ground Truth

Data| Our Method | Manual| MIRIT | No Registration
1 28/34 30/34 | 23/34 | 25/34
2 17/21 1721 | 11721 | 12/21

Lineage Analysis - Fig. 4 shows lengths of the cell lineages
calculated with the proposed method, semi-automated regis-
tration, MIRIT registration and without registration. We can
see that in tracking without registration and after registration
with MIRIT software, there are no cells that have lineage
lengths greater then four (Fig. 4 (A)) and greater then eight
(Fig. 4 (B)), as opposed to the case with the proposed and
semi-automated registration, where cells have lineages for the
entire 72 hours. The reason for such results is that there is a
big shift between two images from consecutive time points in
the middle time points. Without proper registration the track-
ing algorithm is not able to provide correct cell correspon-
dence results, which interrupts the lineage of the cells. Fig.
4 (A) result can be also related to Fig. 3 (F) since they are
representing statistics from the same dataset. Since no cells
have been tracked in frames five to six and overall there are
eleven frames, then no cell can have a lineage life with the
length greater than or equal to five.

Table 1 shows the number of cell divisions in 72 hours. We
can see that the semi-automated and the proposed registration
provide results that are close to the manual results as opposed
to without registration and MIRIT software.

5. CONCLUSION

Automated image analysis such as registration, segmentation
and tracking of cells in actively developing tissues can pro-
vide high-throughput and quantitative spatiotemporal mea-
surements, which will lead to a better understanding of the
underlying dynamics of morphogenesis. In this paper, we
have described an automated landmark-based image regis-
tration method. The novel contribution of the work lies in
its ability to automatically estimate corresponding landmark
point pairs in densely packed SAM tissue to register CLSM
images. We tested our method on multiple datasets of SAM
cells and showed that the described method significantly im-
proves the cell lineage and division statistics.
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