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Abstract. Person re-identification is an open and challenging problem
in computer vision. Majority of the efforts have been spent either to
design the best feature representation or to learn the optimal match-
ing metric. Most approaches have neglected the problem of adapting the
selected features or the learned model over time. To address such a prob-
lem, we propose a temporal model adaptation scheme with human in the
loop. We first introduce a similarity-dissimilarity learning method which
can be trained in an incremental fashion by means of a stochastic alter-
nating directions methods of multipliers optimization procedure. Then,
to achieve temporal adaptation with limited human effort, we exploit
a graph-based approach to present the user only the most informative
probe-gallery matches that should be used to update the model. Re-
sults on three datasets have shown that our approach performs on par or
even better than state-of-the-art approaches while reducing the manual
pairwise labeling effort by about 80%.
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1 Introduction

Person re-identification is the problem of matching a person acquired by dis-
joint cameras at different time instants. The problem has recently gained increas-
ing attention (see [1] for a recent survey) due to its open challenges like changes
in viewing angle, background clutter, and occlusions. To address these issues,
existing approaches seek either the best feature representations (e.g., [2,3,4]) or
propose to learn optimal matching metrics (e.g., [5,6,7]). While they have ob-
tained reasonable performance on commonly used datasets (e.g., [8,9,10]), we
believe that these approaches have not yet considered a fundamental related
problem: how to learn from the data being continuously collected in an installed
system and adapt existing models to this new data. This is an important problem
to address if re-identification methods have to work on long time-scales.

To illustrate such a problem, let us consider a simplified scenario in which
at every time instant a conspicuous amount of visual data is being generated
from two cameras. From each camera we obtain a large set of probe and gallery
persons that have to be matched. Since this is a task that evolves over time, it
is unlikely that the a-priori selected features or the learned model return the
correct gallery match for every probe at any instant. In addition, after each of
such matches is computed, the information provided by the considered images is
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Fig. 1: Illustration of the re-identification pipeline highlighting our contribution.
Dashed lines indicate the training stage, solid lines the deployment stage. Existing
methods do not consider the information provided by a matched probe-gallery pair to
update the model. We propose to use such information to improve the model perfor-
mance by adapting it to the dynamic environmental variations.

discarded. This results in a loss of valuable information which could have been
used to update the model, thus ideally yielding better performance over time.

The above problem could be overcome if the data could be exploited in a
continuous learning process in which the model can be updated with every single
probe-gallery match. Since we do not know whether a match is correct or not, the
model might be updated with the wrong information. To tackle this issue, manual
labeling of each match can be performed, but, doing so with a large corpus of
data is clearly impossible. However, if the human labor is kept to a minimum,
the model can ideally be adapted over time without compromising performance.
Thus, the main idea of the paper is a person re-identification solution based on
an incremental adaptation of the learned model with human in the loop.
Contributions: As shown in Fig.1, this work brings in two main contributions:
(i) an incremental learning algorithm that allows the model to be adapted over
time, and (ii) a method to reduce the human labeling effort required to properly
update the model. These objectives are achieved as follows.
i) We propose a low-rank sparse similarity-dissimilarity metric learning method

(Section 3.2) which
a) learns two low-rank projections onto discriminant manifolds providing

optimal embeddings for a similarity and a dissimilarity measure;
b) introduces sparsity inducing regularizers that allow identification and

exploitation of the most discriminative dimensions for matching; and
c) is trained in an incremental fashion through a stochastic derivation of

the Alternating Directions Methods of Multipliers (ADMM) [11].
ii) We introduce an unsupervised graph-based approach which, for every probe,

identifies only the most relevant gallery persons among a large set of avail-
able ones (Section 3.3). Such a set, obtained by exploiting dominant sets
clustering [12], contains the most informative gallery persons which are first
provided to the human labeler, then exploited to update the model.

To substantiate our contributions we have conducted the experiments on three
benchmark datasets for person re-identification. Results demonstrate that (i) the
proposed approach for identifying the most informative gallery persons yields
better re-identification performance than using completely labeled data; (ii) the
proposed low-rank sparse similarity-dissimilarity approach trained in an incre-
mental fashion with such informative gallery persons, hence with significantly
less manual labor, performs on par or even better than state-of-the-art methods
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trained on 100% labeled data. In fact, with only 15% labeled data we improve the
previous best rank 1 results by more than 8% on the PRID450S dataset. These
experiments show how re-identification models can be continuously adapted over
time with limited human effort and without sacrifice in performance.

2 Relation to Existing Work

The person re-identification problem has been studied from different perspec-
tives, ranging from partially seen persons [13] to low resolution images [14] –also
considered in camera networks [15], which can eventually be synthesized in the
open-world re-identification idea [16]. In the following, we focus on metric and
active learning methods relevant to our work.
Metric Learning approaches focus on learning discriminant metrics which aim
to yield an optimal matching score/distance between a gallery and a probe image.

Since the early work of [17], many different solutions have been introduced [18].
In the re-identification field, metric learning approaches have been proposed by
relaxing [19] or enforcing [20] positive semi-definite (PSD) conditions as well
as by considering equivalence constraints [21,22,23]. While most of the exist-
ing methods capture the global structure of the dissimilarity space, local solu-
tions [24,25,26,27] have been proposed too. Following the success of both ap-
proaches, methods combining them in ensembles [7,5,28] have been introduced.

Different solutions yielding similarity measures have also been investigated by
proposing to learn listwise [29] and pairwise [30] similarities as well as mixture of
polynomial kernel-based models [9]. Related to these similarity learning models
are the deep architectures which have been exploited to tackle the task [31,32,33].

With respect to all such methods, the closest ones to our approach are [6]
and [20]. Specifically, in [6], authors jointly exploit the metric in [21] and learn
a low-rank projection onto a subspace with discriminative Euclidean distance.
The solution is obtained through generalized eigenvalue decomposition. In [20],
a soft-margin PSD constrained metric with low-rank projections is learned via a
proximal gradient method. Both works exploit a batch optimization approach.

Though sharing the idea of finding discriminative low-rank projections, there
are significant differences with our method. Specifically, we introduce (i) an
incremental learning procedure along with a stochastic ADMM solver which can
handle noisy observations of the true data; (ii) a low-rank similarity-dissimilarity
metric learning which brings significant performance gain with respect to each of
its components; (iii) additional sparsity regularizers on the low-rank projections
that allow self-discovery of the relevant components of the underlying manifold.
Active Learning: In an effort to bypass tedious labeling of training data there
has been recent interest in “active learning” [34] to intelligently select unlabeled
examples for the experts to label in an interactive manner.

This can be achieved by choosing one sample at a time by maximizing the
value of information [35], reducing the expected error [36], or minimizing the
resultant entropy of the system [37]. More recently, works selecting batches of
unlabeled data by exploiting classifier feedback to maximize informativeness and
sample diversity [38,39] were proposed. Specific application areas in computer
vision include, but are not limited to, tracking [40], scene classification [35,41],
semantic segmentation [42], video annotation [43] and activity recognition [44].

Active learning has been a relatively unexplored area in person re-identification.
Including the human in the loop has been investigated in [8,45,46]. These meth-
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Fig. 2: Proposed temporal model adaptation scheme. An off-line procedure exploits
labeled image pairs to train the initial similarity-dissimilarity model. As new unlabeled
pairs are obtained, a score for each of those is obtained using the learned model. These
are later used to identify a relevant set of gallery persons for each probe. Such a set,
containing the most informative samples, is exploited to construct the relevant pairs
which are first provided to the human annotator, then considered to update the model.

ods focused on post-ranking solutions and exploit human labor to refine the
initial results by relying on full [8] or partial [45] image selection. In [46], au-
thors introduce an active learning strategy that exploits mid level attributes to
train a set of attribute predictors aiding active selection of images.

Different from such approaches, in our proposed method human labor is
not required to improve the post-rank visual search, but to reliably update the
learned model over time. We do not rely on additional attribute predictors which
require a proper training that calls for a large number of annotated attributes.
Thus bypassing the need for attribute annotation, we reduce both the com-
putational complexity as well as the additional manual effort. We introduce a
graph-based solution that exploits the information provided by a single probe-
gallery match as well as the information shared between all the persons in the
entire gallery. With this, a small set of highly informative probe-gallery pairs is
delivered to the human, whose effort is thus limited.

3 Temporal Model Adaptation for Re-Identification

An overview of the proposed solution is illustrated in Fig.2. Specifically, to
achieve model adaptation over time, we first introduce a similarity-dissimilarity
metric learning approach which can be trained in an incremental fashion (Sec-
tion 3.2). Then, to limit the human labeling effort required to properly update
the model, we propose an unsupervised graph-based approach that identifies
only the most informative probe-gallery samples (Section 3.3).

3.1 Preliminaries

Let P = {Ip}|P|p=1 and G = {Ig}|G|g=1 be the set of probe and gallery images

acquired by two disjoint cameras. Let xp ∈ Rd and xg ∈ Rd be the feature

representations of Ip and Ig of two persons p and g. Let X = {(xp,xg; yp,g)(i)}ni=1
denote the training set of n = |P|×|G| probe-gallery pairs where yp,g ∈ {−1,+1}
indicates whether p and g are the same person (+1) or not (−1). Finally, let an
iteration be a parameter update computed by visiting a single sample and let
an epoch denote a complete cycle on the training set.
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3.2 Low-Rank Sparse Similarity-Dissimilarity Learning

Objective: The image feature representations x might be very high-dimensional
and contain non-discriminative components. Hence, learning a metric in such a
feature space might yield to non-optimal generalization performance. To over-
come such a problem we propose to learn a low-rank metric which self-determines
the discriminative dimensions of the underlying manifold.

Towards such an objective, inspired by the success of similarity learning on
image retrieval tasks [47,48,49], we propose to learn a similarity function

σK(xp,xg) = xTp KTKxg (1)

parameterized by the low-rank projection matrix K ∈ Rr×d, with r � d. This
provides an embedding in which the dot product between the projected feature
vectors is “large” if p and g are the same person, “small” otherwise. The simi-
larity function is then coupled with the output of a metric learning solution that
aims to find a matrix P ∈ Rr×d that projects the high-dimensional vectors to a
low-dimensional manifold with a discriminative Euclidean dissimilarity

δP(xp,xg) = ‖Pxp −Pxg‖22 = (xp − xg)
TPTP(xp − xg) (2)

which is “small” if p and g are the same person, “larger” otherwise. This results
in the score function

SK,P(p, g) = yp,g( σK(xp,xg)︸ ︷︷ ︸
↑for p=g, ↓for p 6=g

− (1/2)δP(xp,xg)︸ ︷︷ ︸
↓for p=g, ↑for p 6=g

) (3)

which included in a margin hinge loss yields

`K,P(p, g) = max (0, 1− SK,P(p, g)) . (4)

Notice that zero loss is achieved if SK,P(p, g) ≥ 1, i.e., when the difference
between σK and 1

2δP is either greater than or equal to 1 for positive pairs or less
than or equal to −1 for negative ones. In other cases a linear penalty is paid.

Obtaining the low-rank projections through eq.(4) with fixed r implies that
such a value should be carefully selected before the learning process begins.
To overcome such a problem, we impose additional constraints on the low-rank
projection matrices. In particular, the `2,1 norm has shown to perform robust
feature selection through the induced group sparsity [50,51,52,53]. Motivated by
such findings, we can set r = d, then leverage on an `2,1 norm regularizer to
drive the rows of P and K to decay to zero. This corresponds to rejecting non
discriminative dimensions of the underlying manifold.

Let ΩK,P = α‖K‖2,1 + β‖P‖2,1 be the cost associated with the low-rank
projection matrix regularizers where α and β are the corresponding trade-off
parameters controlling the regularization strength. Then, considering that we
want to optimize the empirical risk over X , we can write our objective as

arg min
K,P

JK,P +ΩK,P where JK,P =
1

n

n∑
i=1

`K,P

(
p(i), g(i)

)
(5)

and p(i) and g(i) denote the identities of persons p and g in the i-th pair of X .

Incremental Learning: The objective function in eq.(5) is a sum of two func-
tions which are both convex but non-smooth. A solution to such kind of a prob-
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lem that allows us to perform incremental updates can be obtained using the
ADMM optimization algorithm [11].

ADMM solves optimization problems defined by means of the corresponding
augmented Lagrangian. By introducing two additional constraints K −U = 0
and P−V = 0 we can define the augmented Lagrangian for eq.(5) as

LK,P,U,V,Λ,Ψ = JK,P +ΩU,V + 〈Λ,K−U〉+ 〈Ψ,P−V〉 (6)

+
ρ

2

(
‖K−U‖2F + ‖P−V‖2F

)
where Λ ∈ Rr×d and Ψ ∈ Rr×d are two Lagrangian multipliers, 〈·, ·〉 denote the
inner product, ‖·‖F is the Frobenius norm and, ρ > 0 is a penalty parameter.

To solve the optimization problem, at each epoch s, ADMM alternatively
minimizes L with respect to a single parameter, K, P, U, V, Λ or Ψ, keeping
others fixed. The result of each minimization gives the updated parameter.

Standard deterministic ADMM implicitly assumes true data values are avail-
able, hence overlooking the existence of noise [54]. Noticing that only K and P
depend on the data samples, we define the corresponding update rules using the
scalable stochastic ADMM approach [55,56] which can handle such an issue.

Update K and P: Let ∂
∂KJK,P = 1

n

∑n
i=1

∂
∂K`K,P(p(i), g(i)) and ∂

∂PJK,P =
1
n

∑n
i=1

∂
∂P`K,P(p(i), g(i)) denote the subgradients components of eq.(4) com-

puted for all samples with respect K and P, respectively. Then, at each iteration
t, i.e., for the t-th random sample, we compute

K̃(t+1) = K̃(t) − η
(

∂

∂K̃(t)
`K̃(t),P̃(t)(p

(t), g(t))− ∂

∂K(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂K(s)
JK(s),P(s) + ρ

(
K̃(t) −U(s) + Λ(s)/ρ

))
(7)

P̃(t+1) = P̃(t) − η
(

∂

∂P̃(t)
`K̃(t+1),P̃(t)(p

(t), g(t))− ∂

∂P(s)
`K(s),P(s)(p(t), g(t))

+
∂

∂P(s)
JK(s),P(s) + ρ

(
P̃(t) −V(s) + Ψ(s)/ρ

))
(8)

where η is the step size and K̃(t) and P̃(t) denote the parameters for a specific
iteration t, while K(s) and P(s) represent the parameters obtained for epoch s.
Once T iterations are completed, the two low-rank matrices are updated as

K(s+1) =
1

T

T∑
t=1

K̃(t) P(s+1) =
1

T

T∑
t=1

P̃(t) (9)

Update U and V: To derive the updates for the two regularizers, we first com-
pute the partial derivatives of eq.(6) with respect to U and V while keeping other
parameters fixed. Then, solving for a stationary point yields

U(s+1) =
(
K

(s+1)
i,: + Λ

(s)
i,: /ρ

)
max

(
0, 1− α/

(
ρ
∥∥∥K(s+1)

i,: + Λ
(s)
i,: /ρ

∥∥∥
2

))
(10)

V(s+1) =
(
P

(s+1)
i,: + Ψ

(s)
i,: /ρ

)
max

(
0, 1− β/

(
ρ
∥∥∥P(s+1)

i,: + Ψ
(s)
i,: /ρ

∥∥∥
2

))
(11)
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whose closed form solutions have been obtained using the group soft-thresholding
technique [51] and i = 1, · · · , r denotes the i-th row of a parameter matrix.

Update Λ and Ψ: Results from eq.(9) and eq.(10-11) can be finally used to
update the duals for the Lagrangian multipliers as

Λ(s+1) = Λ(s) + ρ(K(s+1) −U(s+1)) (12)

Ψ(s+1) = Ψ(s) + ρ(P(s+1) −V(s+1)) (13)

To conclude, after S epochs have been performed, the optimal estimates for
the two low-rank projection matrices are given by K(S) and P(S).

3.3 Model Adaptation with Reduced Human Effort

In the previous section we have presented a similarity-dissimilarity learning
model which can be trained in an incremental fashion. To achieve model adapta-
tion over time, we propose to perform incremental steps to minimize eq.(6) with
new image pairs that are progressively acquired as time passes. This requires
human labeling of such pairs. To limit such a manual effort and improve model
generalization, we aim to select only a small set of informative gallery persons to
update the model. These are persons for which the positive/negative association
with the probe is very uncertain. Given a probe, such gallery persons form its
probe relevant set.

Probe Relevant Set Selection: Let H = {xp,xg | g = 1, . . . , |G|} denote
the probe-gallery set for probe p. We represent such a set as an undirected
graph with no loops. More precisely, let G = (V,E,W) denote a graph where
V = {p, g|g = 1, . . . , |G|} is the set of vertices, E ⊆ V ×V is the set of edges and

W ∈ R|V |×|V |+ denotes the adjacency symmetric matrix of positive edge weights
such that, for any two vertices i and j, Wi,j = f(SK,P(i, j)) if i 6= j, Wi,j = 0,
otherwise. f(·) is the Platt function [57] used to ensure a positive edge weight.

To obtain the probe relevant set, we aim to cluster G in such a way that (i)
a cluster contains the probe and gallery persons which are similar to each other,
and (ii) all persons outside a cluster should be dissimilar to the ones inside. To
achieve such an objective, we exploit the dominant sets clustering technique [12].

Dominant set clustering partitions a graph into dominant sets on the basis of
the coherency between vertices as measured by the edge weights. A dominant set
is a subset of the graph nodes having high internal and low external coherency.

To obtain such partitions, the dominant sets approach is based on the partici-
pation vector h. It expresses the probability of participation of the corresponding
person in the cluster. More precisely, the objective is

ĥ = arg max
h

hTWh s.t. h ∈ S (14)

where S is the standard simplex of R|V |.
Let the participation vector be initialized to a uniform distribution, i.e.,hi =

1/|V |, for i = 1, . . . , |V | 4. Then, as shown in [12], a solution to the optimization
problem can be obtained by an iterative procedure that, at each iteration k,

4 Effect of this initialization is checked by adding random noise to each element of h.
Results show that in 96% of the cases the output cluster is the same.
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Algorithm 1: Temporal Model Adaptation for Person Re-Identification
Off-Line Training
Input: X , η > 0, ρ > 0, T > 0, S > 0
Output: Discriminative low rank projection matrices K and P

Initialize: K(1) and P(1) to random, Λ(1) and Ψ(1) to 0

Set: U(1) = K(1),V(1) = P(1)

Iterate for s = 1, . . . , S
1. Consider all the n training samples to pre-compute the average hinge loss

subgradients with respect to K(s) and P(s)

2. Set K̃(t) = K(s), P̃(t) = P(s), then run T iterations and update K̃(t) and P̃(t) as in
eq.(7) and eq.(8)

3. Average over the T updates as in eq.(9) to obtain K(s+1) and P(s+1)

4. Update the constraints U(s) and V(s) using eq.(10) and eq.(11)
5. Compute the dual updates for the Lagrangian multipliers as in eq.(12) and eq.(13)

6. Obtain the optimal estimates K = K(S) and P = P(S)

Temporal Model Adaptation

Input: K, P, H, η > 0, ρ > 0, T̂ > 0, Ŝ > 0, ε > 0
Output: Updated discriminative low rank projection matrices K and P
1. Compute the scores for each possible probe-gallery pair via SK,P to obtain W
2.Solve the problem in eq.(14) –using eq.(15)– to obtain the probe relevant set Dp

3. Form the set of probe relevant pairs
4. Update K and P by performing off-line training steps 1-6 with the probe relevant pairs,

S = Ŝ and T = T̂

updates the participation vector as

h
(k+1)
i = h

(k)
i

(Wh(k))i
(h(k))TWh(k)

for i = 1, . . . , |V | (15)

The iterative updates are applied until the objective function difference be-
tween two consecutive iterations is higher than a predefined threshold ε. When
such a condition is not satisfied a local optima is obtained and the non-zero

entries in the participation vector ĥ specify the relevant nodes included in the
dominant set. Notice that the dominant sets clustering can be easily extended
to cluster a graph in multiple dominant sets. This is obtained by removing the
person identities included in the current dominant set from H, creating the new
graph structure and then repeating the process. In our approach such a procedure
is applied until the dominant set containing the probe person p is found. This is
the probe relevant set for person p and is denoted as Dp = {i | i 6= p ∧ hi > 0}.
Incremental Model Update: Armed with the probe relevant set, we can now
achieve temporal model adaptation by performing the incremental learning steps
described in sec. 3.2. Towards this objective, we first ask the human annotator
to label only the probe relevant pairs in {(Ip, Ig) | g ∈ Dp}. Then, using the
current parameters K and P as a “warm-restart”, we exploit the newly labeled
samples to run Ŝ epochs, each providing T̂ incremental iterations. When such a
process is completed the updated model parameters K and P are obtained.

3.4 Discussion

Through the preceding sections we have introduced two main contributions
that allow us to obtain model adaptation over time. Specifically, the goal has been
achieved (i) by proposing a stochastic similarity-dissimilarity metric learning
procedure that can be incrementally updated and (ii) by introducing a graph-
based approach that allows to identify the most informative pairs that should
be labeled by the human. All the steps are summarized in Algorithm 1.
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(a) (b) (c)

Fig. 3: 15 image pairs from the (a) VIPeR, (b) PRID450S and (c) Market1501 datasets.
Columns correspond to different persons, rows to different cameras.

MLAPG [20] and XQDA [6], which learn a discriminant subspace as well as
a distance function in the learned subspace, are close to the proposed approach.
However, both of them do not update the model over time. In addition, our
solution differs in the stochastic ADMM optimization, the combination of both
a similarity and a dissimilarity measure, as well as the sparsity regularization.

4 Experimental Results

Datasets: We evaluated our approach on three publicly available benchmark
datasets5, namely VIPeR [58], PRID450S [59], and Market1501 [60] (see Fig. 3
for few sample images). Following the literature, we run 10 trials on the VIPeR
and PRID450S dataset, while we use the available partitions for Market 1501.
We report on the average performance using the Cumulative Matching Charac-
teristic (CMC). We refer to our method as Temporal Model Adaptation (TMA).

VIPeR [58] is considered one of the most challenging datasets. It contains
1,264 images of 632 persons viewed by two cameras. Most image pairs have
viewpoint changes larger than 90°. Following the general protocol, we split the
dataset into a training and a test set each including 316 persons.

PRID450S [59] is a more recent dataset containing 450 persons viewed
by two disjoint cameras with viewpoint changes, background interference and
partial occlusion. As performed in literature [61,62], we partitioned the dataset
into a training and a test set each containing 225 individuals.

Market1501 [60] is the largest currently available person re-identification
dataset. It contains 32,668 images of 1,501 persons taken from 6 disjoint cameras.
Multiple images of a same person have been obtained by means of a state-of-the-
art detector, thus providing a realistic setup. To run the experiments, we used
the available code6 to get the same BoW feature representation as well as the
same train/test partitions containing 750 and 751 person identities each.
Implementation: To model person appearance we adopted the Local Maximal
Occurrence (LOMO) representation [6]. We selected α = 0.001, β = 0.001, η = 1,
and ρ = 1 by performing 5-fold cross validation on {1, 0.5, 0.1, 0.05, 0.01, 0.001}.
The temporal model adaptation followed the common batch framework used in
active learning [34]. It partitioned each training set into 4 disjoint batches. Due
to the adopted randomization procedure, each batch contains approximately
z = (|P|/4) × (|G|/4) pairs7. We have used the first batch to train the initial

5 See supplementary for additional results on the 3DPeS and CUHK03 datasets.
6 http://www.liangzheng.com.cn
7 The percentage of labeled pairs is computed with respect to n.

http://www.liangzheng.com.cn
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Table 1: Comparison with state-of-the-art methods on the VIPeR dataset. Best results
for each rank are in boldface font.

Rank → 1 10 20 50 Labeled [%] Reference

TMA4+LADF 48.19 87.65 93.54 98.41 20.32+100 Proposed + [24]
TMA0 43.83 83.86 91.45 97.47 100 Proposed
LMF+LADF 43.29 85.13 94.12 – 100 CVPR 2014 [63]+[24]
TMA4 41.46 82.65 92.46 99.65 20.32 Proposed
MLAPG 40.73 82.34 92.37 – 100 ICCV 2015 [20]
XQDA 40.00 80.51 91.08 – 100 CVPR 2015 [6]
TMA3 37.97 75.00 87.66 96.52 12.56 Proposed
SCNCDFinal 37.80 81.20 90.40 97.0 100 ECCV 2014 [61]
PKFM 36.8 83.7 91.7 97.8 100 CVPR 2015 [9]
TMA2 36.08 71.84 81.96 94.62 6.78 Proposed
TMA1 35.13 69.94 81.01 93.35 4.91 Proposed
QALF 30.17 62.44 73.81 – 100 CVPR 2015 [60]
ISR 27.43 61.06 72.92 86.69 100 TPAMI 2015 [3]
WFS 25.81 69.56 83.67 95.12 100 TPAMI 2015 [64]
KISSME 19.60 62.20 77.00 91.80 100 CVPR 2012 [21]

model with T = 2z, S = 200, and no further stopping criteria. The remaining
ones have been used for the batch-incremental updates with T̂ = 2z and Ŝ = 150
(in the following, the subscript of TMA indicates the number of model updates
that are achieved for every probe in each batch). Finally, to select the relevant
gallery images in each batch we have set ε = 0.1 (see Table 5).

4.1 State-of-the-art Comparisons

In the following we compare the results of our approach with existing meth-
ods. In addition to the incremental performance, we also provide our results
when no model adaptation is exploited and all the training data is included in
one single batch (TMA0).

VIPeR: Results in Table 1 show that our approach has better performance
than recent solutions even in the case only about 5% of the data is used. This
result indicates that, partially due to the feature representation (see results of
KISSME in Table 4), our approach produces a robust solution to viewpoint vari-
ations. Incremental updates bring TMA4 to be the second best. In such a case,
only LMF+LADF performs better. However, such an approach is a combination
of two methods, which, as shown in [5], generally improves the performance.
Indeed, a rank 1 recognition rate of 48.19% is achieved by summing TMA0 and
LADF scores. If the same batches as TMA1−4 are considered to train LADF, the
fused rank 1 performances are of 35.6%, 37.9%, 40.8% and 43.4%, respectively
–which represent an average improvement of 11% over standalone LADF.

Finally, results obtained with TMA0 show that the best rank 1 is achieved,
but performance on higher ranks is slightly worse than the one obtained us-
ing incremental updates (TMA4). Hence, using all the available data requires
additional manual labor and might also drive to decreasing performance. This
strengthens our contribution showing that, by identifying the most informative
samples to train with, better results can be achieved with reduced human effort.

PRID450S: In Table 2 we report on the performance comparisons between
existing method and our approach on the PRID450S dataset. Results show that
our solution outperforms the methods used for comparisons regardless of the
amount of data used for training. In particular, using only 14.25% of the data
an 8% improvement with respect to the best existing approach is obtained at
rank 1. By training only with the initially available data (i.e., TMA1), our so-
lution outperforms SCNCDFinal [61], which, on the VIPeR dataset, had better
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Table 2: Comparison with state-of-the-art methods on the PRID 450S dataset. Best
results for each rank are in boldface font.

Rank → 1 5 10 20 50 Labeled[%] Reference

TMA0 54.22 73.78 83.11 90.22 97.33 100 Proposed
TMA4 52.89 76.00 85.78 93.33 97.78 14.25 Proposed
TMA3 50.22 75.56 85.33 92.89 97.64 10.18 Proposed
TMA2 48.89 75.33 84.01 91.1 97.33 8.64 Proposed
TMA1 45.33 72.00 83.11 89.78 96.02 6.42 Proposed
CSL 44.4 71.6 82.2 89.8 96.0 100 ICCV2015 [62]
SCNCDFinal 41.6 48.9 79.4 87.8 95.4 100 ECCV2014 [61]
SCNCD 41.5 66.6 75.9 84.4 92.4 100 ECCV2014 [61]
KISSME 33 – 71 79 90 100 CVPR2012 [21]

Table 3: Rank 1 and mAP performance comparison with existing methods on the
Market 1501 dataset. Best result is in boldface font.

Method
BoW
[60]

LMNN
BoW [60]

ITML
BoW[60]

KISSME
BoW [60]

TMA1

BoW
TMA2

BoW
TMA3

BoW
TMA4

BoW
TMA4

LOMO

Rank 1 42.64 38.91 27.08 43.03 28.77 34.68 39.81 44.74 47.92
mAP 19.47 17.34 8.13 19.98 8.69 14.56 17.89 20.92 22.31

Labeled [%] 100 100 100 100 5.23 8.71 12.09 14.36 13.58

performance (until the 3rd batch update). This may suggest that our approach
is robust to background clutter and occlusions which PRID450S suffer from.

Market1501: Comparisons of our approach with existing methods on the
Market 1501 dataset are shown in Table 3. The obtained performance are consis-
tent with the ones achieved on the VIPeR and PRID450S datasets. Our approach
has significantly better performance than methods used for comparisons even by
using 5.23% of labeled data. Incremental updates bring in relevant improve-
ments and with TMA4 we achieve the best rank 1 recognition rate, i.e.,44.74%.
Using the LOMO feature representation instead of the BoW one provided by [60],
about a 3% rank 1 performance gain is obtained. Results on such dataset demon-
strate that our approach can scale to a real scenario and achieve competitive
performance with significantly less manual labor. The reason for the improved
performance with much less training data is because our method identifies the
most discriminating examples to train with, and does not waste labeling effort
on those that will add little or no value to the re-identification accuracy.

4.2 Influence of the Temporal Model Adaptation Components

To better understand the achieved performance, we have run additional ex-
periments by separately considering the similarity-dissimilarity metric learning
approach and the probe relevant set selection method.

Similarity-Dissimilarity Metric: In the following, we first analyze the con-
tribution of the similarity and the dissimilarity components. Then, we compare
our performance with existing methods using the same LOMO representation.

Contribution of the components: In Fig.4, we report on the results ob-
tained using either the learned similarity, the learned dissimilarity or both. Re-
sults show that most of the performance contribution is provided by the dis-
similarity. The similarity has significantly lower performance and calls for more
labeled pairs. This is due to the fact that the majority of the edges of the corre-
sponding graph have weak weights, thus causing the maximization procedure to
select more samples before the stop condition. Enforcing agreement on a specific
pair by jointly optimizing the similarity and the dissimilarity measure results in
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Fig. 4: Comparison of the similarity-dissimilarity learning components. (a)–(d) show
the results on the VIPeR dataset computed using incremental batch updates. For each
curve, the percentage of manually labeled samples is indicated in parenthesis. The
inside picture show the results for rank range 1–10.

Table 4: Comparison with metric learning approaches on the VIPeR dataset. Results
obtained using truncated projections (100 dimensions) are given for three representative
ranks. Last row shows the percentage of manually labeled samples. Best results for each
rank are in bold. Most of the results are from [20].

Rank ↓ MLAPG XQDA KISSME LMNN LADF ITML LDML PRDC TMA1 TMA2 TMA3 TMA4

1 39.21 38.23 33.54 28.42 27.63 19.02 13.99 12.15 32.28 34.81 36.07 39.88
10 81.42 81.14 79.30 72.31 75.47 52.31 38.64 35.82 69.62 73.10 76.27 81.33
20 92.50 92.18 90.47 85.32 88.29 67.34 48.73 48.26 81.33 58.79 90.19 91.46

Labeled [%] 100 100 100 100 100 100 100 100 4.91 6.91 11.48 15.77

the best performances. With respect to the dissimilarity approach, this yields
negligible increase of manual labor and improved results (7% at rank 1).

Comparison with existing methods: In Table 4, we report on the compar-
ison of our similarity-dissimilarity approach with general state-of-the-art met-
ric learning approaches, namely ITML [65], LMNN [66], LDML [67], and re-
identification tied ones namely, PRDC[30], KISSME [21], LADF [24], XQDA [6],
and MLAPG [20]. To provide a fair comparison, we used the same settings in [20].
Precisely, the 100 principal components found by PCA have been exploited to
train LMNN, ITML, KISSME, and LADF. Since other methods, i.e., XQDA,
PRDC, LDML, MLAPG and TMA, are able to discover the discriminative fea-
tures, we used all the principal components. For a fair comparison, projection
learned by XQDA, MLAPG and TMA were truncated to 100 dimensions.

Results in Table 4 show that our approach, trained with only 4.91% of the
available data, has the 4th best rank 1 result. As shown in Fig. 4, such a successful
result is due to the competition between the similarity and the dissimilarity ap-
proaches. Performing incremental updates yields significant improvements and,
after the 4th update is completed, the best rank 1 recognition rate is achieved. At
higher ranks, TMA performs on par with other methods but with substantially
less labeled pairs (i.e., 15.77% of all possible annotations).

Discussion: Results have demonstrated that, while the dissimilarity metric
has more impact on the performance, by enforcing competition with the sim-
ilarity measure better results can be obtained. Additional evaluations showed
that by removing the `2,1 norms the degradation is of 3%. Comparisons with
existing approaches have shown that, under the same conditions, our approach
achieves good results using only 1/6 of the data. Incremental updates produce
considerable improvements with a significantly reduced human effort. This sub-
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Table 5: Analysis of the ε parameter used to obtain the probe relevant set. Each entry
in the table shows the rank 1 performance as well as the percentage of labeled data (in
brackets). Best results for each rank are in bold.

ε→ 0.5 0.3 0.1 0.05 0.01

TMA1 35.13 (4.91) 35.13 (4.91) 35.13 (4.91) 35.13 (4.91) 35.13 (4.91)
TMA2 36.08 (7.87) 35.76 (7.26) 36.08 (6.78) 34.49 (6.62) 34.49 (6.20)
TMA3 37.03 (11.36) 36.23 (10.59) 37.97 (12.56) 36.71 (8.97) 34.81 (7.95)
TMA4 38.61 (14.74) 38.92 (13.50) 41.46 (20.32) 39.87 (11.49) 37.97 (9.81)
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Fig. 5: Re-Identification performance on the VIPeR dataset computed using four differ-
ent probe relevant set selection criteria. (a)-(c) show the performances achieved using
the 2nd-4th batch incremental updates. The percentage of manually labeled samples
is given within parenthesis. The inside picture show the results on a log-scale reduced
rank range, i.e.,1-50.

stantiates the benefits of the proposed similarity-dissimilarity learning approach
and demonstrate the feasibility of temporal model adaptation for the task.
Probe Relevant Set Selection: In the following, we provide an analysis of
the graph-based solution to identify the most informative gallery persons. We
report on the effects of the ε parameter, then we compare with three approaches.

Influence of ε: To verify the influence of the ε parameter, we have computed
the results in Table 5. These show that, large values of ε produce coarse under-
segmented sets, hence identify a large number of relevant pairs to label. Small
values of ε, e.g., 0.01, produce over segmented-graphs, hence small dominant sets.
Indeed, after the 4th update, less than 10% of all the available pairs has been
used for training. This results in achieving similar performance improvements,
but with a different manual effort. The reason behind this is that, in the former
case, the probe relevant sets contain additional persons which are not “similar”
to the probe and any other gallery person. This causes the model to be updated
with uninformative pairs which weaken its discriminative power. In the latter,
too few informative pairs are found and the model overfits such samples.

Selection Criteria Comparison: In Fig.5, we compare our probe relevant
set selection approach with three different criteria. Before exploiting such crite-
ria, we applied Platt scaling [57] to the obtained scores to get the probability of
each probe-gallery pair being positive.

i) Unsupervised : Each pair having probability less than 0.5 has been assigned
the negative label, remaining ones have been assigned the positive label.

ii) Semi-Supervised : Top and bottom 20 ranked pairs have been labeled as posi-
tive or the negative, respectively. Remaining pairs have been human labeled.

iii) Supervised : Every pair has been human labeled.
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Results show that using the unsupervised or the semi-supervised criteria, the per-
formance obtained with incremental updates tends to decrease. This behavior is
due to the fact that, right after the first update, the produced scores induce very
small or very large probabilities. This yields zero manual labor, but, as a conse-
quence, the model is updated with a large portion of mislabeled samples. Using
our solution, performance reaches the ones obtained using a fully-supervised ap-
proach. In particular, with the 4th batch update our approach yields the highest
rank 1 recognition rate (41.46% vs 39.87%) with 5% less manual labor. Addi-
tional experiments considering the human mislabeling error C ∈ {5, . . . , 95}%
show that the model update is effective when C ≤ 15%.

Discussion: In this section, we have shown that our approach is moderately
sensible to the selection of ε, which to some extent, controls the human effort.
In addition, it performs better than a fully supervised approach in which all the
samples are manually labeled. This demonstrates that the proposed approach
identifies the most informative pairs that should be used to update the model.

4.3 Computational Complexity

Table 6: Comparison between deterministic ADMM and our stochastic solution.
VIPeR result computed by running MATLAB code on an Intel Xeon 2.6GHz. Com-
plexity is computed for the parameters updates which differs from the two solutions.

.

Method ↓ TMA1 - Rank 1 Per-Epoch Complexity Training Time [s]

Deterministic ADMM 34.84 O
(
2(n2d2 + d3)

)
12051.19

Stochastic ADMM 35.15 O
(
2(n3d2 +K3d2)

)
2948.38

In Table 6, we compare the computational performance of deterministic
ADMM and our stochastic solution. While achieving similar rank 1 performance,
deterministic ADMM brings in more complexity, hence the training time is con-
siderably higher. In particular, while d might be arbitrarily large, n and K are
usually small (those depend on the number of samples which are manually la-
beled), thus our solution is more desirable in a continuous learning scenario.

Finally, notice that, while the initial training is more expensive than existing
approaches, e.g., KISSME [21], the proposed incremental learning solution is
more effective in the long term since it does not require re-training like others.

5 Conclusion

In this paper we have proposed a person re-identification approach based on
a temporal adaptation of the learned model with human in the loop. First, to
allow temporal adaptation, we have proposed a similarity-dissimilarity metric
learning approach which can be trained in an incremental fashion by means of
a stochastic version of the ADMM optimization method. Then, to update the
model with the proper information, we have included the human in the loop and
proposed a graph-based approach to select the most informative pairs that should
be manually labeled.Informative pairs selection has been obtained through the
dominant sets graph partition technique. Results conducted on three datasets
have shown that similar or better performances than existing methods can be
achieved with significantly less manual labor.
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