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Abstract

Minimization of labeling effort for person re-
identification in camera networks is an important problem
as most of the existing popular methods are supervised and
they require large amount of manual annotations, acquiring
which is a tedious job. In this work, we focus on this labeling
effort minimization problem and approach it as a subset
selection task where the objective is to select an optimal
subset of image-pairs for labeling without compromising
performance. Towards this goal, our proposed scheme first
represents any camera network (with k number of cameras)
as an edge weighted complete k-partite graph where each
vertex denotes a person and similarity scores between
persons are used as edge-weights. Then in the second
stage, our algorithm selects an optimal subset of pairs by
solving a triangle free subgraph maximization problem on
the k-partite graph. This sub-graph weight maximization
problem is NP-hard (at least for k ≥ 4) which means for
large datasets the optimization problem becomes intractable.
In order to make our framework scalable, we propose two
polynomial time approximately-optimal algorithms. The
first algorithm is a 1/2-approximation algorithm which
runs in linear time in the number of edges. The second
algorithm is a greedy algorithm with sub-quadratic (in
number of edges) time-complexity. Experiments on three
state-of-the-art datasets depict that the proposed approach
requires on an average only 8-15% manually labeled pairs
in order to achieve the performance when all the pairs are
manually annotated.

1. Introduction
Person re-identification is a challenging task in computer

vision which aims to recognize the same person across dif-
ferent cameras. In recent times, person re-id has attracted a
significant amount of research interest because of its various
security and surveillance related applications [8, 23]. The
basic problem definition of person re-id is as follows: given
a person’s image from one camera (denoted as ‘probe’) we
have to find a matching person (if it exists) in a set of images
from another camera.

Person re-id methods can be broadly categorized into
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Figure 1: This figure illustrates the motivation of our approach.
Here, we have a camera network with three cameras. P i

k represent
the ‘i’-th person in the ‘k’-th camera. Now suppose, we ask the
human to label the pairs P 1

1 −P 1
2 and P 1

1 −P 2
3 by asking a yes/no

question. As both of them are positive matches, after we know the
labels of these two pairs using transitivity property we can correctly
infer the label of P 1

2 −P 2
3 . Similarly, if we know labels of P 1

1 −P 1
2

and P 1
1 − P 1

3 we can precisely infer that P 1
2 − P 1

3 is a negative
match. However, knowing the labels of pairs P 1

1 −P 2
2 and P 1

1 −P 1
3

does not give us any information about the pair P 2
2 − P 1

3 .

three classes: supervised [11, 12, 13, 28, 33], semi-
supervised [32,34] and unsupervised methods [2,4,10,15,35].
Among these approaches, supervised distance metric learn-
ing based methods are specifically popular because of their
robustness towards large color variations and fast training
speed. However, like other supervised methods, metric learn-
ing algorithms have their own burden of human labeling
effort especially for large camera networks [27]. The total
number of training pairs assumed to be available by these
algorithms increases tremendously with network size and
number of persons in each camera. Manual labeling of such
huge number of pairs is a tedious and expensive process. So
naturally a question arises: given a camera network, can we
come up with a strategy of choosing a minimal subset of im-
age pairs for labeling without compromising on recognition
performance? This is a problem of considerable significance
in the context of person re-id in multi-camera networks, es-
pecially in larger ones. However, the problem has received
little attention in the literature thus far.

Transitive relations among person identities across mul-
tiple cameras and their logical consequences are strongly
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informative properties. These properties have been explored
previously for globally consistent person re-id in several
existing works [3, 5, 14]. Though it may not be apparent at
first, we can also exploit these transitive relations to reduce
manual pairwise annotation effort. To illustrate the idea, let
us consider few plausible scenarios as shown in Figure 1.

• In camera pair 1-2 and 1-3, if we know from human
labeling person that pairs P 1

1 − P 1
2 and P 1

1 − P 2
3 are

positive matches, then from transitivity we can directly
infer that P 1

2 and P 2
3 also have same identity.

• Similarly, if we have labels of P 1
1 − P 1

2 (+ve) and
P 1
1 − P 1

3 (-ve), we can infer that P 1
2 − P 1

3 is negative.

• However, given that we already know labels of P 1
1 −

P 2
2 (-ve) and P 1

1 − P 1
3 (-ve), we still cannot conclude

anything about pair P 2
2 − P 1

3 .

So, from the examples above we can make a simple ob-
servation, i.e., if we don’t ask human for the label of the
third pair/s in the first two cases described above, required
labeling effort will be considerably reduced. However, this
seemingly simple strategy implicitly makes an invalid as-
sumption that we already have access to the pair-labels from
human. Also, note that, if we arbitrarily choose subsets of
pairs for labeling there is no guarantee that we will be able
to take advantage of pairwise-relations as we will end up
frequently in situations like the third scenario (occurrence
probability of this scenario is significantly higher than the
other two). So, in order to actually reduce annotation effort
using this transitivity based approach, we have to choose
image pairs in a judicious manner.

Towards this objective, in this work, we first formulate
this pair subset selection as a combinatorial optimization
problem on edge-weighted k-partite graph. This combina-
torial optimization can be represented as a binary integer
program which we can solve exactly for smaller datasets
using standard techniques such as branch and cut [21], cut-
ting plane algorithms [16], etc. However, as it is an NP-hard
optimization problem, solving it with exact algorithms takes
exponential order time and for larger datasets it becomes in-
tractable. So, in order to scale up the proposed methodology
for large camera networks, we propose two polynomial-time
sub-optimal algorithms for our optimization problem. The
first proposed algorithm is a pure greedy algorithm and sec-
ond one is a 1/2-approximation algorithm.

1.1. Main contributions

1) We propose a pairwise subset selection framework to
minimize human labeling effort for person re-id in camera
networks. Our method does not require us to make any as-
sumption about the topology of the camera network or the
learning algorithm. Thus, even though in this specific work
we present our framework in conjunction with KISSME [11],
our algorithm can be used with any supervised algorithm.

2) To cope with the ’NP’ hardness of our formulated opti-
mization problem, we propose two polynomial time algo-
rithms for solving it sub-optimally for large networks.
3) To demonstrate the efficacy of the proposed method, we
conduct extensive experiments on three benchmark multi-
camera person re-id datasets. The results show that our
algorithm can significantly reduce annotation effort without
adversely affecting recognition performance.

2. Related works
Metric Learning in Person Re-id. Metric learning

based methods focus on learning a discriminative projection
which will helps to cluster similar and dissimilar pairs sepa-
rately. In person re-identification literature numerous metric
learning based methods have been proposed. KISSME [11]
is one such popular metric learning method which uses log-
likelihood ratio test to construct a Mahalanobis type distance
metric. XQDA [13] uses quadratic discriminant analysis to
derive the metric. LMNN [33] learns the distance metric via
penalizing closeness between dissimilar samples. Various
other metric learning methods are proposed in [20, 26],etc.
A comprehensive survey on this topic can be found in [37].

Scalable Person Re-id. Authors in [1] propose a scal-
able re-id framework using manifold smoothing. Active
learning is introduced for incremental updates in [31]. An-
other scalable re-id framework which incorporates human
machine interaction is proposed in [32]. In [6], an entropy
based selection approach is proposed for reducing manual
annotation. In [17],the authors uses a dominant clustering
based approach for probe relevant set selection and utilizes
it for pair selection in a dynamic setting.

Transitivity in Re-id. Transitivity is utilized in [5] for
increasing performance by re-organizing the predicted as-
signment matrix. The method proposed in [14] also uses
similar ideas to structure a deep learning based framework.

Budget Constrained Learning. The problem of video
analysis under budget constraints have been studied by few
researchers [24, 25, 30] in the recent past, however none
look into the problem of re-identification under budget con-
straints. Activity detection under a computational budget is
considered in [29].

3. Proposed Method
3.1. k-Paritite Graph Based Representation

In our work, we represent any camera network as a edge
weighted complete k-partite graph Gk = (V,E) [see Figure
2]. This section describes in detail how this partite graph is
constructed from a camera network consisting of k cameras
and total n persons across all cameras.
Vertex: Each vertex in Gk denotes a person in the camera
network. To be precise, vertex vik′ represents the i-th person
from k′-th camera. From now on, throughout rest of the work
we will use the terms ‘person’ and ‘vertex’ interchangeably.



𝑽𝟏 𝑽𝟐

𝑽𝟑

𝑽𝟒

Figure 2: This figure demonstrates representation of a cam-
era network with four cameras as a k-partite graph with
k=4.

Edge: An edge Ei,jk1,k2 = (vik1 , v
j
k2

) denotes probable corre-
spondence between i-th person in camera k1 and j-th person
in camera k2.
Vertex Set Partitions: As per our definition, the set of all
the persons in a camera network forms the vertex set V of
Gk. Now in our framework, we assume the intra-camera
vertices are not connected to each other, i.e., they form an
independent vertex set. So, k sets of vertices from each
different camera form k different partitions. More formally,
V = (V1, V2, ..., Vk) where Vk′ =

{
v1k′ , v

2
k′ , . . . , v

nk′
k′

}
is

the set of nk′ persons in k′-th camera. So, if we have
n1,n2,. . . ,nk persons in camera 1, camera 2, . . . , camera k
respectively, the cardinality of the set V is

|V | =
k∑
i=1

|Vi| = n1 + n2 + ...+ nk = n (1)

Now, Gk is a complete multipartite graph as we have proba-
ble correspondences (i.e. an weighted edge) between every
pair of vertices from different partitions. So the total number
of edges in the graph, can be computed as follows:

|E| =
∑

∀k1∈{1,2,...,k}
∀k2∈{1,2,...,k}
s.t. k1<k2

nk1nk2 (2)

Edge weight: We define our edge weight function Fw :
E → R, as follows:

Fw
(
Ei,jk1,k2

)
= S

(
vik1 , v

j
k2

)
(3)

where S is a function which computes similarity or asso-
ciation score between two persons vik1 and vjk2 . It may be
noted that our framework can be used with any kind of sim-
ilarity measure. As we define our objective function [see
Section 3.3] over non-negative edge weights, the proposed
scheme will scale any negative valued similarity score into a
non-negative value using the sigmoid function. In this work,

we compute similarity scores between a pair of shots of two
persons as follows:

S
(
vik1 , v

j
k2

)
=

1

1 + exp
(
D(f ik1 ,f

j
k2

)− µ
) (4)

where f ik1 ,f
j
k2

are the feature vectors of the corresponding
persons vk1i , v

k2
j respectively,D is a distance function giving

distance between two feature vectors, and µ is a threshold.
Triangle: Complete subgraphs (or clique) of size 3 are
termed as triangle in any graph. Naturally, whenever we have
three persons(vertices), vik1 , v

j
k2
, vlk3 from three different

cameras (camera k1, camera k2 and camera k3), they form
a triangle, T i,j,lk1,k2,k3

=
{
vik1 , v

j
k2
, vlk3

}
. As we progress, we

will see that triangles are the central objects around which
our whole framework evolves.

3.2. Pair Selection as a Combinatorial Optimization

With the initial setup in place, we can now formulate
the image pair selection task as an optimization problem on
our graph Gk. Let us consider first revisiting the problem
statement of the budget constrained pair-selection task.
Problem Statement: Given a labeling budget, B, and a set
of training image pairs from a camera network, we have to
select an optimal subset of size at most B from the training
set for human annotation. The notion of ‘optimal subset’
is incomplete. In the introduction of this paper, we have
already seen that transitive relations defined over associa-
tions between different persons (vertices) can be utilized for
labeling effort reduction. Now we give that idea a concrete
shape by making some specific observations in the context
of our graph Gk.

• For any triangle in our graph, we have a total three
edges from which we can select for manual labeling.

• We may always want to select positive edges as they
will contribute more towards reducing manual labeling
effort because transitive inference in our graph always
requires at least one positive edge.

• Based on the examples mentioned in Section 1, if we
have precise information about two edges in a triangle
of our graph, and one of them is a positive edge then
we can deterministically infer the label of the third
edge. For this reason we must always want to constrain
the number of edges chosen for manual labeling in a
triangle be at most two in order to respect the budget.

• As we cannot foresee the actual labels, we have to
choose that pair of edges from any triangle which will
maximize the probability of getting at least one positive
match.

• Also, note that any edge is a part of multiple triangles
in our graph, so inference propagation can occur from
different directions.



With these observations in mind, our optimization problem
can be stated as follows:

• Given a complete k-partite graph Gk = (V,E) with
non-negative edge weights and an integer B, choose
a maximum-weight set S of edges from E such that
G′ = (V, S) is triangle free and |S| ≤ B.

Lemma 1. The decision problem corresponding to the above
optimization problem is NP-hard for k-partite graphs with
k ≥ 4. (Proof: see supplementary material)

3.3. An Equivalent Binary Integer Program

We can recast our combinatorial optimization as a binary
integer programing problem as follows:

argmax
xi,j
k1,k2

∀(i,j)∈δ(k1,k2)
∀k1,k2∈{1,...,k} s.t k1<k2

 k∑
k1,k2=1
k1<k2

nk1
,nk2∑

i,j=1

wi,jk1,k2x
i,j
k1,k2


(5)

subject to:
k∑

k1,k2=1
k1<k2

nk1
,nk2∑

i,j=1

xi,jk1,k2 ≤ B,

∀(i, j) ∈ δ(k1, k2) ∀k1, k2 ∈{1, 2, ..., k} s.t k1 < k2 (6)

xi,jk1,k2 + xi,lk1,k3 + xj,lk2,k3 ≤ 2, ∀(i, j) ∈ δ(k1, k2)

k1, k2, k3 ∈ {1, 2, ..., k}s.t. k1 < k2 < k3 (7)

xi,jk1,k2 ∈ {0, 1} , ∀(i, j) ∈ δ(k1, k2),

∀k1, k2 ∈ {1, 2, ..., k} s.t. k1 < k2
(8)

where, Equation (5) represents the linear objective function,
which aims to maximize the total weight of the chosen sub-
graph. δ(k1, k2) denotes the edge-set between camera k1
and k2. Equations (6)-(8) are the constraints we have to sat-
isfy. In the above set of equations, xi,jk1,k2 denotes the edge
between i-th person in camera k1 and j-th person in camera
k2. xi,jk1,k2’s are defined over all possible values of i, j, k1
and k2 as described above and together all possible xi,jk1,k2 ’s
form the decision variable set. wi,jk1,k2 ’s are the weights of the
corresponding edges and B is our labeling budget. The first
constraint (6) dictates that we can select at most B number
of edges. Equation (7) constrain that the subgraph formed by
the selected edges be triangle free. Equation (8) denotes that
optimization variable be binary, where a 1 would indicate
that an edge is chosen for manual labeling and 0 otherwise.

3.4. Polynomial Time Approx.-Optimal Algorithms

In case of smaller datasets, we can easily solve our op-
timization problem using traditional integer programing al-
gorithms, such as cutting plane methods [16], Branch and
Cut [21] etc. These methods always provide globally optimal
solutions. However, as they are exponential time algorithms,

we cannot employ them for larger datasets. In order to tackle
this challenge, we propose two polynomial time algorithms
which drastically improve scalability.

Algorithm 1. This algorithm is motivated by the observation
that if we make any cut on the vertex set of a graph, the set of
cut crossing edges induces a triangle free subgraph. So if we
can make a cut which maximizes the total weight of edges
crossing the cut, then we may construct a approximately-
optimal solution using those edges. In graph theory, the max-
cut problem is well studied where the objective is to find such
max-weight cut. As max-cut is also an NP-hard [19] prob-
lem, there is no known efficient algorithm for it. However
there exists a deterministic 1/2-approximation algorithm for
max-cut [7, 22]. Our first algorithm uses this 1/2-max cut to
achieve 1/2 approximation for our problem.

After initialization steps, Max-Cut Select algorithm con-
structs the subgraph G′ using the top B heaviest edges in
E. Then it employs the deterministic 1/2-max cut algorithm
on G′ to generate a cut (S, V \ S). Finally the algorithm
selects the set T of edges which crosses the cut (S, V \ S)
and returns it. Below we prove that Max-Cut Select is a
1/2-approximation algorithm.

Algorithm 1: Max-Cut based edge selection

1 Max-Cut Select (G,B)
Input :An edge weighted graph G and budget B
Output :T , a subset of edges in G

2 E′ ← B heaviest edges in G.E
3 V ← G.V
4 G′ ← (V,E′)
5 S ← 1/2-Max-Cut(G′)
6 T ← Edge set crossing the cut (S, V \ S)
7 return T

Lemma 2. Algorithm 1 is a 1/2-approximation algorithm
for the budget constrained triangle free subgraph weight
maximization problem.

Proof. Let, for a given graph G = (V,E) and a budget
B, OPT be the weight of the optimal solution to our prob-
lem.The algorithm returns the edge-set T as a solution. We
prove our lemma by showing:

1. weight(T ) ≥ OPT/2, and
2. T induced subgraph (let us denote this subgraph by
GT ) is a triangle free subgraph of G.

Note that E′ is defined as the set of the B heaviest edges in
E. So, we have,

OPT ≤ weight(E′) (9)

Now, T is the set of cut-crossing edges which we obtained
after applying the deterministic 1/2-max-cut algorithm on
the E′ induced subgraph, G′. So GT is a bipartite subgraph
of G′ and this implies GT is a bipartite subgraph of G. This



proves our second claim that GT is triangle free. Also, from
the property of 1/2-max cut we have,

weight(T ) ≥ weight(E′)/2. (10)

Then by Equation (9) and (10), we get weight(T ) ≥
OPT/2, which proves our first claim.

In Algorithm 1, we have used the deterministic 1/2-
approx. algorithm for the subroutine ‘1/2-Max-Cut’, which
cuts at least 1/2 of the total edge weights.
Algorithm 2. Often in practice, simple greedy heuristics
give better performance as compared to other theoretically
superior algorithms. This perspective has motivated us to ex-
plore greedy strategies for our problem resulting the ’Greedy-
Select’ algorithm. Greedy-Select begins with an empty set
T and iterates over the edges in decreasing weight order. In
each iteration the algorithm adds the current edge to the set
T if the current edge does not form any triangle with the
existing edges in T . The algorithm terminates either when
we have collected B number of edges in set T or we have
iterated over all the edges in the graph.

Algorithm 2: Greedy algorithm for edge selection

1 Greedy-Select (G,B)
Input :An edge weighted graph G and budget B
Output :T , a subset of edges in G

2 T ← ∅
3 Q← G.E
4 while |T | ≤ B and |Q| ≥ 1 do
5 (u, v)← Extract-Max(Q)
6 if (u, v) doesn’t create any triangle with the

existing edges in T then
7 T ← T ∪ (u, v)
8 end
9 end

10 return T

Time Complexity: Algorithm 1 first selects B heavi-
est edges of the graph. With sorting, this selection can be
done in Θ(|E| log |E|) time. All the other operations in-
cluding the 1/2-max cut can be done in O(|E|) time. So,
any sorting based implementation of Algorithm 1 will take
Θ(|E| log |E|) time. Using linear time selection algorithm
instead of sorting, this can be further reduced to O(|E|).

The outer loop in Algorithm 2 runs at most |E| times
which takes O(|E|) time. Within the loop, triangle free
checking (in line 6) can be done naively in O(|E|) time and
it is the most expensive step. So, any basic implementation
of Algorithm 2 will take O(|E|2) time. This complexity
can be reduced to O(|E|3/2 log |V |) using the merge step of
merge-sort algorithm for triangle checking or even better to
O(|E|3/2) using hash tables along with ‘merge’ protocol.

4. Experimental Results
Datasets: To substantiate our proposed algorithm, we

conduct extensive experiments on three publicly available
benchmark datasets, namely WARD [18], RAID [5] and
Market-1501 [36].

Metric learning model: In this work, we use KISS met-
ric learning method [11] for our experiments. The reason
we choose KISSME is twofold, first it is an incredibly fast
method and secondly, it is still a top performing method on
several datasets [9].

Two Stage Edge Selection. Given a budget of B, we
use a portion of the budget pB(0 < p < 1) [we used p =
0.7 for experiments] to select triangle free edges using our
optimization problem. However, in cases where the selected
edges in a triangle are both negative matches, we cannot
infer about the label of the third edge and we may want to
gather information about it. For this reason, after first stage
of triangle free selection, we employ a greedy top selection
mechanism to exhaust the rest of the budget.

Feature representation: To represent each person node
in the graph we use 29600 dimensional LOMO features
[13]. For metric learning, we project the features into 100-
dimensional space using PCA.

Performance measures: We use Cumulative Matching
Curves (CMC) to demonstrate recognition performance at
a given budget. Also, for each dataset we provide labeling
effort vs. recognition performance plots trade-off between
the two. For each dataset, we compare the computation costs
associated with the proposed approaches. We also provide
the percentage of total labels and positive labels obtained, as
defined below, using only B manual labels.

Total Labels in % =
# Inferred labels + # Manual labels

# Total pairs
∗ 100

+ve Labels in % =
# +ve pairs in (Manual + Inferred) labels

# +ve pairs in the dataset
∗ 100

Baseline: In this work, we use top-B edge selection as
the baseline strategy. For all our experiments we compare
our method against this baseline.

Similarity score computation: We use euclidean metric
as our distance function. In any on-line setting, similarity
scores at any time instant can be computed using the learned
metric from the previous instance.

4.1. WARD

WARD [18] has a total 4786 number of images of 70 peo-
ple. All the images were captured by three non-overlapping
cameras. Large variation of illumination poses the main
challenge for this dataset. Following the protocols in exist-
ing literature [5], we use 35 persons for training and 35 for
testing set. We consider two different setup for experiments
as described below:
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Figure 3: This figure presents the comparisons of the proposed approach with baselines on the WARD dataset. (a)-(c) are for
Configuration 1 and (d)-(f) for Configuration2. (a,d) are CMC curvers with 15% manual labeling and (b,e) are CMC curves
with 5% manual labeling. (c,f) presents the plot for manual labeling effort vs. Rank-1 accuracy.

1. All the 35 persons are available to each camera. We
denote this setup as Configuration 1.

2. We remove randomly 4 persons from each camera and
the use the rest for training. This configuration emulates
more realistic surveillance scenario where each person
may not get captured by each camera. This setup will
be referred as Configuration 2.

We present experimental results for Config. 1 in Figure 3.
The CMC curve in Figure 3a demonstrates that with only
15% manual labeling all the three variants of our proposed
scheme achieve similar rank-1 accuracy as the full set. The
greedy algorithm maintains this performance level for higher
ranks as well. Recognition accuracy slightly deteriorates
at rank 3 and beyond, in case of Exact method and 1/2-
approximation algorithm. Almost at all rank instances, the
baseline method gives significantly worse performance com-
pared to the proposed methods. Figure 3b shows perfor-
mance of the selection strategies with 5% labeling budget.
No methods achieve full set accuracy with this amount of
label. We demonstrate percentage of manual labeling vs
Rank-1 accuracy plot for Config. 1 in Figure 3c. This plot
shows that the baseline cannot reach full set recognition per-
formance with 32% manual labeling, whereas, the proposed
methods reach the same by only 15% manual labeling.

For Config. 2, with 15% annotations, all the proposed
approaches achieve (see Figure 3d) similar performance
similar to the full set. Figure 3e shows CMC curves for
5% labeling. Even with this tiny amount of labeling, the
proposed methods performs as good as the full set. The

Table 1: Comparison of computation time requirements for
WARD dataset. WARD-1 and 2 denotes the Configuration
1 and 2 respectively. Here, NV stands for number of opti-
mization variables and B is our budget.

Algorithm
WARD-1 (NV =
3675, B = 15%)

WARD-2 (NV =
2883, B = 15%)

Exact 0.63 0.24
1/2-Approx. 0.017 0.012
Greedy 0.054 0.037

baseline also performs competitively.
Table 1 compares computation time of the proposed ap-

proaches for the two different configurations as we described
above. As we can see from the table, the 1/2-approximation
algorithm takes the least amount of time, among the all three
algorithms. The problem sizes are of order 103, so solving
the BIP also does not demand excessive time.

4.2. RAID

Re-identification Across Indoor-outdoor Dataset (RAID)
is a wide-area camera network dataset. RAID contains 6920
bounding boxes of 43 subjects. For our experiments, we
use 41 identities which are common to each camera. We
partition the dataset into 25-16 split for training and testing
purpose. We consider this split to effectively create the two
configurations similar to the experiments for WARD dataset,
i.e., again we consider two different scenarios to demonstrate
the performance of our framework under varying setup.The
first configuration of our experimental setup assumes all 25
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Figure 4: This figure presents the comparisons of the proposed approach with baselines on the RAID dataset. (a)-(c) are for
Configuration 1 and (d)-(f) for Configuration 2. (a) and (d) are CMC curves with 15.7% and 16% manual labeling respectively.
(b,e) are CMC curves with 5% manual labeling. (c,f) presents the plot for manual labeling effort vs. Rank-1 accuracy.
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Figure 5: This figure presents the comparisons of the proposed approach with baselines on the Market 1501 dataset using
Configuration 2. (a) and (b) are CMC curves with 8% and 3% manual labeling respectively. (c) presents the plot for manual
labeling effort vs. Rank-1 accuracy.

persons are present in the field of view of every camera,while
the second one again considers a more generalized setting
where we remove four persons from each camera randomly
and use the rest 21 persons for metric learning.

We demonstrate the experimental results for
Configuration-1 in Figure 4. The key observations
are as follows: With only 15.7% labeled pairs,followed
by label propagation [see 4.4], both our exact and greedy
algorithms achieve full set rank-1 accuracy which is 50.50%
[see Figure 4a]. Their performance level matches the full
set recognition rates at other ranks as well. In comparison,
the 1/2-approximation algorithm gives relatively poor
rank-1 recognition rate, and performance degrades with
increasing rank values. The baseline method performs

worse than Greedy and Exact algorithms, but provides
similar rank-1 results as 1/2-approx. algorithm. Figure 4b
presents the CMC curves of different approaches with 5%
labeling. Though the proposed method could not achieve
full set recognition performance with this meager amount of
labels, it still manages to perform within around 70% of the
full set performance @ rank-1. At this labeling budget, the
Exact and Greedy schemes achieve nearly similar re-id rate
throughout all the ranks and compared to them 1/2-approx
gives slightly poor performance. The baseline method starts
with an accuracy gap of 24.05% from the full set and gives
similar poor performance for higher rank retrievals as well.
We show the trade off between labeling effort and rank-1
accuracy in Figure 4c which highlights the fact that our



Table 2: Comparison of time (in seconds) requirements for
RAID dataset. Notations are same as Table 1

Algorithm
RAID-1 (NV =
3750, B = 15%)

RAID-2 (NV =
2646, B = 15%)

Exact 0.54 0.27
1/2-Approx. 0.014 0.013
Greedy 0.055 0.038

framework is capable of obtaining almost same level of
performance as the full set using only about 15% of labeled
pairs.

Config. 2 is a far more challenging scenario compared
to the first one. Naturally, in this setting the full set rank-1
accuracy itself drops below 35%. With only 16% labels all
the proposed algorithms achieve this accuracy, which can be
seen from Figure 4d. Our baseline achieves around 30.5%
rank-1 accuracy and attains 63% test recognition rate at rank
10 while maintaining a considerable gap with the proposed
methods throughout this range. Figure 4e shows the CMC
curve with 5% manual labels. In this setting, performance of
Exact algorithm gets surpassed by all the other methods and
Baseline algorithm gives better performance compared to all
the proposed methods.Figure 4f presents labeling budget
vs rank-1 accuracy plots for Config. 2.In this dataset for
Config. 2, 5-10% labeling is an extreme case studied to un-
derstand the performance degradation of our approach; from
about 15% labeling, followed by label propagation[see 4.4],
our method performs better than competing ones. Table 2
compares running time of the different approaches for RAID.

4.3. Market 1501

Market 1501 [36] is one of the biggest person re-id
datasets available today. It has 32,668 images of 1501 per-
sons taken from six cameras. We use the train-test split given
in the dataset. Apart from large variations in pose and illumi-
nations, the size of the dataset itself introduces a new level
of computational challenge. For Market, the optimization
problem we consider , has more than 4.3 millions variables.
This is a staggeringly large optimization problem. Natu-
rally, the problem gets intractable to be solved by any exact
method. So for this dataset, we do not report any results
using the Exact method. Also, we do not construct addi-
tional experimental settings as we did for WARD and RAID
because there are many persons available in the dataset who
are captured by only a subset of the total number of cameras.

Figure 5a demonstrates re-id performance with 8% labels.
As we can observe from this plot, both of our approaches
achieve full set accuracy with this amount of labeling. While
with 3% labels, performance of the proposed approaches
slightly degrades [see Figure 5b]. In Figure 5c, we provide
the manual labeling percentage vs rank-1 accuracy graph.
From all these three graphs, it can be easily observed that the
proposed approach performs better than the baseline across
all the conducted experiments on Market dataset.

We compare run times for Market in Table 3. It can be
clearly seen that the 1/2-approximation algorithm can be sig-
nificantly faster than the greedy method. However, a point to
be considered is efficient implementation of these algorithms
may further improve their computational performance.

Table 3: Comparison of time requirements (in seconds) for
Market 1501 dataset. Notations are same as Table 1

Algorithm Market (B = 8%) Market (B = 3%)
1/2-Approx. 10.59 4
Greedy 2100 595

4.4. Label Gains
Table 4 and 5 presents the total and positive labels ac-

quired after manual labeling followed by transitive inference.
Table 4 demonstrates the label gains for the budgets used in
the above experiments, while Table 5 presents the amount
of manual labeling required to achieve ”near-100%” posi-
tive labels. As can be seen from the tables, the proposed
approach possess the ability to recover most of the labels
using a meager amount of manual annotations.

Table 4: Comparison of Total Labels (Positive Labels)

Algo. WARD RAID Market
15% Manual 15.7% Manual 8% Manual

Exact 43.5 (90.5) 91.9 (97.3) -
Greedy 50.9 (92.4) 91.9 (97.3) 81.8 (94.9)
1/2-apx. 42.7 (89.5) 80.1 (94.7) 72.7 (92.9)
Baseline 35.3 (81.1) 52.0 (82.0) 35.9 (79.2)

Table 5: This table presents the manual labeling required to
achieve near 100% Positive Labels. Values in format Total
Labels (Positive Labels).

Algo. WARD RAID Market
23% Manual 17% Manual 20% Manual

Exact 85.5 (96.2) 99.0 (100) -
Greedy 86.7 (96.2) 99.0 (100) 88.1 (96.6)
1/2-apx. 80.7 (96.2) 99.0 (100) 82.5 (95.0)

5. Conclusions
In this work, we addressed the problem of labeling re-

duction for person re-identification in camera networks. In
pursuit of this goal, we first formulated our problem as a
combinatorial optimization on k-partite graph. The deci-
sion version of our optimization problem is NP-complete.
So to make our approach scalable, we propose two poly-
nomial time sub-optimal algorithms. One of the proposed
algorithm is 1/2-approximation algorithm. We validated our
framework by conducting experiments on three benchmark
datasets and the results clearly demonstrated the efficacy of
our approach. Future works can be targeted towards devel-
oping algorithms with better optimality guarantees.
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